

 �

�

�

�

�

�

�

Programmer’s Guide Volume I

Overview & Video

�
�

�

����������	��
����

���
������
�

�������
�

®

�

®

�

labs

Programmer’s Guide Volume I

Overview & Video
�

����������	��
����

���
������
�

�������
�

®

�������

Permedia4 Programmer’s Guide Volume I Front Matter

�(PEFW Proprietary and Confidential i

Proprietary Notice

The material in this document is the intellectual property of �'labs �. It is provided solely for information.
You may not reproduce this document in whole or in part by any means. While every care has been taken
in the preparation of this document, �'labs accepts no liability for any consequences of its use. Our
products are under continual improvement and we reserve the right to change their specification without
notice. �'labs may not produce printed versions of each issue of this document. The latest version will be
available from the �'labs web site.

�'labs products and technology are protected by a number of worldwide patents. Unlicensed use of any
information contained herein may infringe one or more of these patents and may violate the appropriate
patent laws and conventions.

�'labs � is the worldwide trading name of �'labs Inc. Ltd.

�'labs , GLINT, GLINT Gamma, PERMEDIA, OXYGEN AND POWERTHREADS are trademarks or registered
trademarks of �'labs Ltd., �'labs Inc. Ltd or �'labs Inc.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of Microsoft Corp. in the
United States and/or other countries. OpenGL is a registered trademark of Silicon Graphics, Inc. All other
trademarks are acknowledged and recognized.

© Copyright �'labs Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com

Web: http://www.3dlabs.com

�'labs Ltd.
Meadlake Place

Thorpe Lea Road, Egham
Surrey, TW20 8HE

United Kingdom
Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

�'labs K.K.
Shiroyama JT Mori Bldg 16F

40301 Toranomon
Minato-ku, Tokyo, 105, Japan

Tel: +81-3-5403-4653
Fax: +91-3-5403-4646

�'labs Inc.
480 Potrero Avenue

Sunnyvale, CA 94086,
United States

Tel: +1 (408) 530-4700
Fax: +1 (408) 530-4701

Ê

 Front Matter Permedia4 Programmer’s Guide Volume I�

ii Proprietary and Confidential �(PEFW�

Change History

�
Document Issue Date Change

�������� �� ��2FWREHU����)LUVW�'5$)7�,VVXH��

�������� �� ���-XQH������ ,PSURYHPHQWV�FRUUHFWLRQV�WR�/%�DQG�)%��UHPRYHG�LQFRUUHFW�

IRRWQRWH�UHI�WR�3(5(1�����'0$�&RQWLQXH���FODULILHG�RSDTXH�

VSDQ�FRORU�PDVNLQJ��FRUUHFWHG�3L[HO6L]H�XVH��GHOHWHG�)&3�

UHIHUHQFH�LQ�*,'�SRVLWLRQ�WH[W��FKDQJHG�3&,�PDS�DFFHVV�IURP�

�	��WR��	���

�������� �� ���)HEUXDU\������ 5HPRYHG�ZDUQLQJ�UH�GDFSRZHUFRQWURO��DGGHG�VHFWLRQ�UH�

5'&KHFN&RQWURO��DGGHG�96$�YLGHR�LQSXW�VWUHDP�VHWXS�WR�

5$0'$&�FKDSWHU��

�

Permedia4 Programmer’s Guide Volume I Front Matter

�(PEFW Proprietary and Confidential iii

Contents

Proprietary Notice i
Change History ii
Contents iii

� INTRODUCTION 1-1
1.1 How to use this manual 1-1
1.2 Further Reading 1-2

� ARCHITECTURE OVERVIEW 2-1
2.1 Functional Overview 2-1
2.2 Block Diagram 2-2
2.3 Host Interfaces 2-2
����� 8EWO�7[MXGLMRK� ���

2.4 Processor evolution and programming changes 2-3
����� 4VSKVEQQMRK�GLERKIW�JVSQ�IEVPMIV�TVSHYGXW� ���
����� 4IVQIHME��4IVQIHME��4VSKVEQQMRK�(MJJIVIRGIW� ���

� PROGRAMMING MODEL 3-1
3.1 Permedia4 as a Register file 3-1
����� 6IKMWXIV�8]TIW� ���
�����)JJMGMIRG]�-WWYIW�ERH�6IKMWXIV�8]TIW� ���

3.2 Permedia I/O Interface 3-2
����� *-*3�GSRXVSP� ���
����� 8LI�(1%�-RXIVJEGI� ���
����� :IVXI\�0SEHMRK�JSV�4VMQMXMZIW�ERH�(EXE�6I�SVHIVMRK� ���
����� &EGOJEGI�'YPP�ERH�8I\XYVI�7IXYT�*YRGXMSRW� ����

3.3 Output FIFO 3-12
3.4 Other Interrupts 3-13
3.5 Synchronization 3-13
3.6 Host Framebuffer Bypass 3-14
����� *VEQIFYJJIV�(MQIRWMSRW�ERH�(ITXL�$$$������� ����

3.7 Host Localbuffer Bypass 3-14
3.8 Register Read back and Context Dump/Restore 3-15
����� 'SRXI\X�(YQT�6IWXSVI� ����
����� 6IKMWXIV�6IEHFEGO� ����

3.9 Byte Swapping 3-15
3.10 Red and Blue Color Ordering 3-16

� BUFFER AND CACHE MANAGEMENT 4-1
4.1 Introduction 4-1
4.2 Localbuffer (LB) 4-1
����� 0SGEPFYJJIV�1EREKIQIRX� ���
����� 0E]SYX� ���
����� 4M\IP�*SVQEXW� ���
����� 4M\IPW�ERH�7TERW� ���

 Front Matter Permedia4 Programmer’s Guide Volume I�

iv Proprietary and Confidential �(PEFW�

����� 'PIEVMRK�XLI�0SGEPFYJJIV�YWMRK�*&;VMXI� ���
����� +-(�JMIPH� ���
����� 7XIRGMP�*MIPH� ���
����� *VEQI'SYRX�*MIPH� ���
����� 8I\XYVI�1ET�7XSVEKI� ���
����� 7SYVGI�ERH�(IWXMREXMSR�6IEHW� ���
����� 0&�;VMXIW� ���

4.3 Framebuffer (FB) 4-8
������ *VEQIFYJJIV�1EREKIQIRX� ���
������ *VEQIFYJJIV�0E]SYX� ���
������ &PSGO�;VMXIW� ���
������ 4M\IPW�ERH�7TERW� ���

4.4 Double Buffering 4-10
������ &MX&PX�(SYFPI�&YJJIVMRK� ����
������ 4EKI�*PMTTMRK� ����
����� :MHIS�3YXTYX� ����
������ 8I\XYVI�1ET�1EREKIQIRX� ����
������ 7SYVGI�ERH�(IWXMREXMSR�%HHVIWW�'EPGYPEXMSR� ����
������ 3VMKMR�ERH�7XVMTI�(EXE� ����
������ ;VMXI�'SQFMRMRK� ����

4.5 Suspend and Swap on Frame Blank 4-12
4.6 Downloading Data 4-12
4.7 Controlling the VTG or RAMDAC 4-12
4.8 Texture Mapping 4-13
������ 8I\XYVI�1IQSV]�0E]SYXW� ����
������ %HHVIWW�'EPGYPEXMSR� ����
������ 4VMQEV]�'EGLI� ����

4.9 Virtual Texture Management 4-16
����� 1ETTMRK�ER�%HHVIWW� ����
����� 0SKMGEP�4EKI�1ETTMRK� ����
����� 8VERWPEXMSR�0SSO�EWMHI�&YJJIV��80&�� ����
����� 0SKMGEP�4EKI�8EFPI� ����
����� 1IQSV]�%PPSGEXMSR� ����
����� 4VSKVEQQMRK�2SXIW�JSV�2SR�,SWX�8I\XYVIW� ����
����� 4VSKVEQQMRK�2SXIW�JSV�,SWX�8I\XYVIW� ����

4.10 3D and Other Textures 4-24
������ �(�8I\XYVIW� ����
������ &MXQETW� ����
������ -RHI\IH�8I\XYVIW� ����
������ =9:�����8I\XYVIW� ����
������ &SVHIVW� ����

4.11 Texture Implementation 4-26
������ 3ZIVZMI[� ����

Permedia4 Programmer’s Guide Volume I Front Matter

�(PEFW Proprietary and Confidential v

������ 1IQSV]�-RXIVJEGIW� ����
������ 8VERWPEXMSR�0SSO�%WMHI�&YJJIV��80&�� ����
������ 1IQSV]�%PPSGEXIV� ����
������ (MWTEXGLIV� ����

4.12 Texture DMA Controller 4-31

� VIDEO SYSTEM 5-1
5.1 Video Unit 5-1
����� 4VSKVEQQMRK�8LI�:MHIS�9RMX�8MQMRK�6IKMWXIVW� ���
����� 7IXXMRK�XLI�HMWTPE]�QIQSV]�VIKMSR� ���
������ 7IXXMRK�:MHIS�8MQMRK�4EVEQIXIVW� ���
����� 'SRJMKYVMRK�XLI�:MHIS9RMX� ���
����� :MHIS�*-*3�GSRXVSP� ���
�����)\EQTPI�8MQMRK�:EPYIW� ���

5.2 RAMDAC 5-7
����� 4VSKVEQQMRK�8LI�6%1(%'�VIKMWXIVW� ���
����� &EWMG�6%1(%'�'SRJMKYVEXMSR� ���
����� 'SPSV�4EPIXXI�6%1� ���
����� 4ERRMRK�8LI�:MHIS�(MWTPE]� ����
����� 'SRJMKYVMRK�8LI�'YVWSV� ����
����� (MKMXEP�*PEX�4ERIP�(MWTPE]�3YXTYX� ����
����� 4VSKVEQQMRK�8LI�'PSGOW� ����

5.3 Video Overlay 5-16
����� 4VSKVEQQMRK�8LI�:MHIS�3ZIVPE]�9RMX�6IKMWXIVW� ����
����� &EWMG�:MHIS�3ZIVPE]�'SRJMKYVEXMSR� ����
����� 7GEPMRK�-QEKIW�8LVSYKL�8LI�:MHIS�3ZIVPE]�9RMX� ����
����� -RXIVPEGIH�:MHIS�;MXL�8LI�:MHIS�3ZIVPE]�9RMX� ����
����� :MHIS�3ZIVPE]�9RMX�*MJS�'SRXVSP� ����

 Permedia4 Programmer’s Guide Volume I Introduction

�(PEFW Proprietary and Confidential 1-1

��
��������	
�����

The Permedia4 family of high performance PCI/AGP graphics processors combine workstation class 3D
graphics acceleration and state of the art 2D performance in a single chip. All 3D rendering operations are
accelerated by Permedia4, including Gouraud shading, depth buffering, antialiasing, alpha blending and
texture mapping.

Implemented around a scaleable memory architecture, Permedia4 reduces the cost and complexity of
delivering high performance 3D graphics within a windowing environment - making it ideal for a wide range
of graphics products from PC boards to high end workstation accelerators.

This document has been written as the reference for programmers and system designers who wish to
develop software to drive the Permedia4. There are separate manuals for related members of the
Permedia, GLINT Gamma and GLINT Delta families. Familiarity with the OpenGL Specification will be
useful when reading this document.

1.1 How to use this manual

The Permedia4 Programmers’ Guide (Volumes I and II) should be read together with the Permedia4
Reference Guide, which contains all of the register descriptions. The Programmers Guide is in two
volumes. The present volume contains:
• Chapter 2 - an overview of Permedia4, its capabilities and architecture, and highlights key differences

between the Permedia4 and GLINT MX or Permedia2/3.
• Chapter 3 - details of the programming model for the chip, including the DMA interface, host bypass

route to unified framebuffer, vertex loading and context changing.
• Chapter 4 - describes the data structures that Permedia4 supports in the framebuffer and the

localbuffer, including virtual texture management
• Chapter 5 - describes the Video System including timing, RAMDAC and overlays.

In Volume II of the Programmers Guide we examine Permedia4 graphics rendering. The chapters begin
with an overview and discussion of 3d and 2d graphics pipelining, followed by a walkthrough of the major
functional groups (Scissor, Fog, Alpha Test, etc.) and a closing discussion of initialization and performance
issues. In addition, volume II contains two appendices and a glossary:

� Appendix A gives the format used in the pseudocode examples throughout the document.

� Appendix B gives example code for rendering a triangle accurately.

� Following the body of the manual, a glossary of technical terms defines many of the 2D/3D graphics
terms used throughout.

Introduction� � Permedia4 Programmer’s Guide Volume I

1-2 Proprietary and Confidential �(PEFW�

1.2 Further Reading

• Permedia4 Reference Guide, 3Dlabs
• Permedia4 Architecture Overview, 3Dlabs
• OpenGL Programming Guide, Jackie Neider et al, Reading MA: Addison-Wesley
• OpenGL Reference Manual, Jackie Neider et al, Reading MA: Addison-Wesley
• The OpenGL Graphics System: A Specification (Version 1.1), Mark Segal and Kurt Akeley, SGI (see

below)
• PCI Local Bus Specification Rev2.1, 1Jun95, PCI Special Interest Group, PO Box 14070, Hillsboro,

Oregon 97214 (503-797-4207)
• Multiprocessor Methods For Computer Graphics Rendering, Scott Whitman, ISBN 0-86720-229-7
• Microsoft WIN32 Software Development Kit 3.1, Microsoft
• Windows NT 3.1 Graphics Programming, Emeryville CA, Ziff-Davis Press
• The X Window System, Sebastopol CA, O’Reilly & Associates Inc.
• The X Window System Server, Elias Israel and Erik Fortune, Digital Press
• Computer Graphics: Principles and Practice, James D. Foley et al, Reading MA: Addison-Wesley

Permedia4 Programmer’s Guide Volume 1 Architecture Overview

�(PEFW Proprietary and Confidential 2-1

��
��������	��
�	���	���	
�

2.1 Functional Overview

Permedia4 is a 3D graphics processor consisting of a geometry set-up processor and rastering engine
together with external interfaces. It fully implements the functionality of "The OpenGL Machine" from edge
walk and span interpolation through fragment level processing including:
• Point, Line, Triangle and Bitmap primitives
• Flat and Gouraud shading
• Texture and Fog
• Antialiasing
• Scissor and Stipple
• Alpha test, Stencil test, Depth (Z) buffer test
• Alpha Blending
• Dithering
• Logical Operations
• Writemasks, spans and images

The 300 MFLOPS geometry set-up unit accepts vertex, color, depth, fog and texture parameters in IEEE
single precision floating point format. It is both OpenGL and Direct3D compliant and supports the Direct3D
TLVERTEX data type and the DirectX 6 Flexible Vertex Format (FVF) extensions.

Systems using Permedia4 can easily be configured to address a wide range of price, performance and
functionality points by simply tuning the external memory design. Permedia4 supports 8, 16 and 32-bit
RGBA and 8-bit color index framebuffers.

The unified memory can be up to 32Mbytes in size. Permedia4 also supports DMA mode virtual texture and
demand page texturing using a 4K local L2 texture cache to incrementally access up to 256MB of
addressable host texture.

Architecture Overview Permedia4 Programmer’s Guide Volume I

2-2 Proprietary and Confidential �(PEFW�

2.2 Block Diagram

-
�

�������

Memory Interface Unit

SGRAM / SDRAM

PCI / AGP Interface

DMA 1DMA 2

SVGA

Video
Stream

Interface

BIOS
ROM

�Ô�

7�`i�Ê+�ÀÍ

PCI / AGP Bus Connector

Pipeline Set-up Processor

Unified
2D, 3D and Video

Graphics
Processor

NTSC
PAL
LCD

DDC2AB

270MHz
RAMDAC

Stereo

Video
Overlay

Figure 2-1 High level blocks in the Permedia4 architecture

2.3 Host Interfaces

The Permedia4 architecture consists of a Graphics Core augmented by I/O and memory interfaces as
shown in Figure 2-1. There are three external interfaces: the Host Bus Interface (PCI/AGP Local Bus), the
SGRAM/SDRAM unified memory Interface, and a Video Stream interface.

There are two ways to program the graphics processor, either by writing to memory mapped registers, or by
sending command packets to the input FIFO (which may be done by HostIn DMA or programmed IO). Both
methods produce tag data that is sent to the pipeline.

A write to a register creates a tag/data pair "message" which has a tag formed from the lower bits of the
address. This tag and the data associated with it are sent to the input FIFO. If the data has been written
directly to the input FIFO address range (or fetched by DMA) a special tag marking it as part of a packet is
sent with the data to the input FIFO. The decode process converts packets into tag/data streams, so that
after this process both methods of progaming are indistinguishable.

Conceptually Permedia4 can be viewed as either a register file or a message passing system. As a register
file, it appears as a flat block of memory-mapped registers. When a driver is initialized it maps the register
file into address space. Each register has an associated address tag containing the offset from the file
base in multiples of 8 bytes (since all registers reside on a 64-bit boundary). The most straightforward way
to load a data value into a register is to write the data to its mapped address.

As a message passing system, Permedia4 consists of processing units connected in a long pipeline with
message-passing communication between adjacent units. There is a small amount of buffering between
units, the size being appropriate to the local communications requirements and unit throughput. Although
the units operate asynchronously they are in practice synchronised by the common clocks.

Units are in fact functional groupings - virtual units - rather than strictly physical entities. For example,
although Frame and Local Buffer "units" exist they operate on contiguous, unified memory. The difference
is that local buffer functions involve GID, stencil and depth facilities while frame buffer functionality primarily
relates to the 8/16/32 bpp color formats.

Each unit can be disabled, and the host can mimic any unit in the chain by inserting messages which that
unit would normally generate, effectively bypassing the unit. The host can also directly access the
framebuffer, and context dump/restore is also supported.

When the control registers have been primed with the data needed to render the primitive, the render
process is triggered by writing to a Command register such as Render2D or ContinueNewLine.

Permedia4 Programmer’s Guide Volume 1 Architecture Overview

�(PEFW Proprietary and Confidential 2-3

2.3.1 Task Switching
Where multiple applications wish to make simultaneous access to Permedia4, it is the responsibility of the
software driving the chip to handle loading and to load the correct state. Permedia4 has been designed to
support a number of different software architectures. Facilities available include:
• Synchronous operation - a new task can load its context without waiting for current rendering to

complete
• All loadable states can be read back
• Sync command to flush all rendering - can be polled or return an interrupt

2.4 Processor evolution and programming changes

Although part of the same family as the Permedia 1 and 2, Permedia4 functionality changes affect almost
all areas of operation, including performance and feature benefits and programming differences from earlier
chipsets such as Permedia3. Performance and feature changes include:
• Increased clock speeds
• Low latency command DMA
• 2M drawn texture-mapped polygons/sec
• 250M perspective correct, bilinear filtered, dual texture texels/sec
• 125M perspective correct, per pixel MIP-mapped trilinear filtered, texture mapped, depth buffered,

fogged and blended pixels/sec
• 8M backface-culled polygons/sec
• Enhanced Texture format (Delta) unit
• Support for HDTV screen resolutions, e.g. 1920x1080
• Optimized for 32-bit displays at resolutions up to 2048x1536
• 266 MHz AGP 4X DMA and Execute Mode support
• 3.3V and 1.5V AGP signal support
• 128 bit internal bus
• LCD flat panel and TV display support
• MPEG2 compatible video playback acceleration with motion compensation, hardware scaling and

filtering

2.4.1 Programming changes from earlier products
Relative to the GLINT MX or Permedia2, for example, there are a large number of new, changed or deleted
registers. There are also a significant number of minor corrections in implementation. These result in
significant programming changes, particularly in
• buffer addressing,
• register width,
• context management,
• texture formatting,
• bitmask spans and span alignment,
• logical operations,
• unit enabling,
• non-linear Z,
• pixel size definition and subpixel correction,
• scale by Q, texture wrap and LOD calculations
• OGL blend modes with multiple texturing
• DMA interrupts
...as well as minor changes in register and bitfield nomenclature and functionality.

2.4.2 Permedia3/Permedia4 Programming Differences
Relative to Permedia3, changes to Permedia4 primarily affect hardware, improving reliability and
performance by removing technical obstacles, clearing errata and adding bandwidth enhancements,
particularly support for PCI 2.2 and the AGP4X bus standard. Programming changes are noteworthy but
few:
• Introduction of a new DeltaFormat unit with early backface cull and texture functionality
• Additional OGL Alphablend interpolations
• A number of bitwise register changes
For a list of errata changes refer to the Permedia3 Errata document and the Permedia4 Reference Guide
volume I, section 1.2 - P3/P4 Differences.

Architecture Overview Permedia4 Programmer’s Guide Volume I

2-4 Proprietary and Confidential �(PEFW�

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 3-1

��
����������	
�����
��

This chapter describes the programming model for Permedia4. It describes the interface conceptually rather
than detailing specific registers and their exact usage. In-depth descriptions of how to program Permedia4
for specific drawing operations may be found in later chapters. Register specifications may be found in the
Permedi3 Reference Guide.

3.1 Permedia4 as a Register file

Of the two I/O models (Message passing or Register file) of Permedia4 the simplest approach is to view it
as a flat block of memory-mapped registers. This register file appears as part of Region 0 of the PCI
address map1. When a Permedia4 host software driver is initialized it maps the register file into its address
space.

Each register has an associated address tag giving its offset from the base of the register file. Since all
registers reside on a 64-bit boundary, the tag offset is measured in multiples of 8 bytes. The obvious way to
load a value into a register is to write the data to its mapped address.

In reality, the chip interface comprises a 32-entry deep FIFO, and each write to a register causes the written
value and the register’s address tag to be written as a new entry in the FIFO. Programming Permedia4 to
draw a primitive then consists of writing initial values to the appropriate registers followed by a write to a
command register. The last write triggers the start of rendering.

Permedia4 has more than 850 registers. These are individually defined in the Permedia4 Reference Guide
(RG). All registers are 32 bits wide and should be 32-bit addressed. Many registers are paired to allow
64bit data handling or split into bit fields for mode setting.

Note: Bit 0 is the least significant bit.

In future chip revisions the register file may be extended and currently unused bits in certain registers may
be assigned new meanings. Developers should ensure that only defined registers are written to and that
undefined bits in registers are written as zeros. The exception to this rule is in some floating point registers
where good practice is to use sign extended values.

Fields marked "not used" in register definitions are not usually being considered for internal use or
development. Fields marked "reserved" are either used internally or reserved for future development.

3.1.1 Register Types
Permedia4 has three main types of register:
• Control Registers
• Command Registers
• Internal Registers

1.1.1.1 Control Registers
Most registers are Control Registers. These are updated only by the host - Permedia4 effectively uses
them as read-only registers. Examples of control registers are the Scissor Clip unit min and max registers
(ScissorMaxXY, ScissorMinXY). Once initialized by the host, the chip only reads these registers to
determine the scissor clip extents.

3.1.1.1 Command Registers
Command Registers are those which, when written to, start a rendering task (although some command
registers such as ResetPickResult or Sync perform other tasks).

There are two types of command registers: begin-draw and continue-draw:
• Begin-draw commands start rendering with the values specified by the control registers.

1 6HH�WKH�3HUPHGLD��5HIHUHQFH�*XLGH��FKDSWHU����IRU�PRUH�LQIRUPDWLRQ�DERXW�WKH�3&,�PDS�

Video System� � Permedia4 Programmer’s Guide Volume I

3-2 Proprietary and Confidential �(PEFW�

• Continue draw commands cause drawing to continue with internal register values as they were when
the previous drawing operation completed. Using continue-draw commands can significantly reduce
the amount of data that has to be loaded when drawing multiple connected objects such as polylines.

Render and ContinueNewLine are typical command registers.

Note: For convenience in this document we often refer to "sending a Render command" rather than
saying "the Render Command register is written to, which initiates drawing".

1.1.1.2 Internal Registers
Internal Registers are not writeable by host software. They are used internally by the chip to keep track of
changing values. Some control registers have corresponding internal registers. When a begin-draw
command is sent the internal registers are updated with the values in the corresponding control registers
before rendering starts. If a continue-draw command is sent then this update does not happen and drawing
continues with the current values in the internal registers.

For example, during line drawing the StartXDom and StartY control registers specify the (x, y) coordinates
of the first point in the line. When a begin-draw command is sent these values are copied into internal
registers. As the line drawing progresses these internal registers are updated to contain the (x, y)
coordinates of the pixel being drawn. When drawing has completed the internal registers contain the (x, y)
coordinates of the next point that would have been drawn. If a continue-draw command is now given these
final (x, y) internal values are not modified and further drawing uses these values. If a begin-draw command
had been used the internal registers would have been re-loaded from the StartXDom and StartY registers.

Internal registers can usually be ignored except when context switching. It is helpful to appreciate that they
exist in order to understand the continue-draw commands.

3.1.2 Efficiency Issues and Register Types
Software developers wishing to write device drivers for Permedia4 should become familiar with the different
types of registers. Some control registers such as the StartX and StartY registers have to be updated for
almost every primitive whereas other control registers such as the ScissorMaxXY or the LogicalOpMode
can be updated much less frequently. Pre-loading of the appropriate control registers can reduce the
amount of data that has to be loaded into the chip for a given primitive thus improving efficiency. In addition,
as described above, the final values in internal registers can sometimes be used for subsequent drawing
operations.

The cross-reference listing in the Permedia4 Reference Guide (Chapter 6) identifies the graphics registers
by type.

Due to the structure of the internal HyperPipeline, when several graphics control registers are being loaded
it is slightly more efficient to load them in pipeline order. For instance registers in the rasterizer should be
loaded before registers in the GID/Stencil/Depth unit.

3.2 Permedia I/O Interface

There are two ways to program the graphics processor: either by writing to memory mapped registers, or
by sending command packets to the input FIFO (which may be done by HostIn DMA or programmed IO).
Both methods convert to tag/data "messages" that are sent to the pipeline, as described earlier2.

3.2.1 FIFO control
The actual register is not updated until Permedia4 processes an entry. When the chip is busy performing a
time consuming operation (e.g. drawing a large polygon), and not draining the FIFO very quickly, it is
possible for the FIFO to become full. If a write to a register is performed when the FIFO is full no entry is put
into the register.

3.2.1.1 PCI Disconnect
Setting bit 0 of the FIFODiscon register to 1 enables FIFO disconnection. It does not require host polling,
but forces host write retries until the data is accepted. This may affect other time-critical peripherals on the
PCI bus, e.g. sound cards, and sometimes drops interrupts. Despite the speed advantage it is therefore
advisable to avoid this approach when large primitives are likely to slow FIFO clearing.

2 Chapter 2, section 3.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 3-3

3.2.1.2 Polling InFIFOSpace
The input FIFO is 32 entries deep and each entry consists of a tag/data pair. The InFIFOSpace register can
be read to determine how many entries are free. The value returned by this register will never be greater
than 323.

An example of loading registers using the FIFO is given below. The pseudocode fills a series of rectangles.
Details of the conventions used in the pseudocode examples may be found in Appendix B.

Assume that the data to draw a single rectangle consists of 8 words (including the Render command).

Note: Some data values are in 16.16 fixed point format.

 for (i = 0; i < nrects; ++i) {
 while (*InFIFOSpace < 8);
 // wait for room
 StartXDom(rect->x1 << 16);
 StartXSub(rect->x2 << 16);
 dXDom(0x0);
 dXSub(0x0);
 Count(rect->y2 - rect->y1);
 YStart(rect->y1 << 16);
 dY(1 << 16);
 Render(PERMEDIA4_TRAPEZOID_PRIMITIVE);
 }

Checking the status of the FIFO before each write is inefficient so it is checked before loading the data for
each complete rectangle. Since the FIFO is 32 entries deep, a further optimization is to wait for all 32
entries to be free after every second rectangle. Further optimization is possible by moving dXDom, dXSub
and dY outside the loop (as they are constant for each rectangle) and doing the FIFO wait after every third
rectangle.

The InFIFOSpace FIFO control register contains a count of the number of entries currently free in the FIFO.
The chip increments this register for each entry it removes from the FIFO and decrements it every time the
host puts an entry into the FIFO.

The graphics core registers cannot be read through the core FIFO interface. Command buffers generated
to be sent to the FIFO interface can be read directly using the DMA controller.

3.2.1.3 Direct writes to the FIFO
In addition to writing to the register file you can send data directly to the core via the input FIFO. Any
address in the PCI region 0 address map range can be read (normally a program will choose the first
address and use this as the address for the output FIFO). All 32-bit addresses in this region perform the
same function – the range of addresses is provided for data transfer schemes which force the use of
incrementing addresses.

Writing to a location in this address range provides raw access to the input FIFO. Thus the same address
can be used for both input and output FIFOs. Reading gives access to the output FIFO; writing gives
access to the input FIFO.

When writing to a memory-mapped register the register file has a unique address for each register. This
allows Permedia4 to construct the appropriate tag, associate it with the data and inserted the tag/data pair
into the input FIFO.

When writing to the raw FIFO address an address tag description must first be written followed by the
associated data. In fact, the format of the tag descriptions and their data is identical to that described below
for DMA buffers4. The DMA mechanism can be thought of as an automatic way of writing to the raw input
FIFO address.

Note: When writing to the raw FIFO address the FIFO full condition must still be checked by reading
the InFIFOSpace register. However, writing tag descriptions does not put tag entries into the
FIFO – it simply establishes a set of tags to be paired with the subsequent data.

Because direct writes to the FIFO do not place tag values in the FIFO itself, the FIFO space can be used for
data only - free space need be ensured only for actual data items that are written (not the tag values). For

3 When the InFIFOspace register is read, the value must be clamped to a maximum of 120 before it is used - refer to Permedia4
Errata and Alerts, PEREN0011.
4 Instead of using the Permedia4 DMA it is possible to transfer data to Permedia4 by constructing a DMA-style buffer of data and
then copying each item in this buffer to the raw input FIFO address. Based on the tag descriptions and data written Permedia4
constructs tag/data pairs to enter as real FIFO entries.

Video System� � Permedia4 Programmer’s Guide Volume I

3-4 Proprietary and Confidential �(PEFW�

example, where e.g. each tag is followed by a single data item, it would be possible to do 32 writes to an
empty buffer before checking for free space.

See the Permedia4 Reference Guide for more details of the Graphics Processor FIFO Interface address
range.

3.2.2 The DMA Interface
Loading registers directly via the FIFO can be an inefficient way to download data. The FIFO can
accommodate only a small number of entries, so it has to be interrogated often to find out how much space
is left. Also, if an API function requires a large amount of data then the function cannot return until almost
all the data has been consumed. This may take some time depending on the types of primitives being
drawn.

To avoid these problems Permedia4 provides an on-chip DMA controller which can be used to load data
from arbitrary sized (< 64K 32-bit words) host buffers into the FIFO. The DMA may be either rectangular or
sequential. The address of the latest DMA data read from memory (for the input DMA only) can be
readback; this allows the progress of the DMA to be monitored and the DMA buffer reused as soon as it is
free. The readback is resynchronizing so the pipeline does not have to be sync’d first.

3.2.2.1 DMA Operation
The normal mode of operation is to build a series of small DMA buffers in system memory and then send
commands to the input FIFO to load them. These commands may be for complete DMA operations or
continue operations to extend the current DMA. Continues are more efficient and should be used where
possible.

Two DMA buffers can be maintained at the same time. If a new address is sent, it can be read from the
FIFO before the current DMA completes. At chip reset the BusMasterEnable bit in the CFGCommand
register must be set to allow DMA to operate (see the Permedia4 Reference Guide for further details).
Then, for the simplest form of DMA, the host software has to prepare a host buffer containing register
address tag descriptions and data values.

The host then writes the base address of this buffer to the DMAAddress register and the count of the
number of words to transfer to the DMACount register. Writing to the DMACount register starts the DMA
transfer and the host can now perform other work.

In general, if the complete set of rendering commands required by a given call to a driver function can be
loaded into a single DMA buffer, then the driver function can return immediately. Meanwhile, in parallel,
Permedia4 is reading data from the host buffer and loading it into its FIFO. In addition, some algorithms
require that data be loaded multiple times (e.g. drawing the same object across multiple clipping
rectangles). Since the DMA only reads the buffer data it can be downloaded many times simply by
restarting the DMA. This can be very beneficial if composing the buffer data is a time consuming task.

An additional mechanism, the HostInID register, can be used to mark any point in the command stream so
that the use of index and vertex buffers can be monitored. This is a register that is loaded with an ID field;
like the DMA address register, this can be read at any time.

To prevent overflows the DMA controller automatically waits until there is room in the FIFO before doing any
transfers. The only restriction on the use of DMA control registers is that before attempting to reload the
DMACount register the host software must wait until previous DMA has completed. The DMAAddress
register can, however, be reloaded while the previous DMA is in progress since the address is latched
internally at the start of the DMA transfer.

3.2.2.2 Typical use
Many display driver functions can be implemented using the following skeleton structure:

do any pre-work
DMAAddress(address of dma_buffer);
while (*DMACount != 0); // wait for DMA to complete
 // note use of backoff algorithm here
copy render data into DMA buffer
DMACount(number of words in DMA buffer)
return

A further optimization is to use a double buffered mechanism with two DMA buffers. This allows the second
buffer to be filled before waiting for the previous DMA to complete thus further improving the parallelism
between host and Permedia4 processing.

do any pre-work

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 3-5

get free DMA buffer and mark as in use
put render data into this new buffer
DMAAddress(address of new buffer)
while (*DMACount != 0)
 ; // wait for DMA to complete
 // using a back off algorithm
DMACount(number of words in new buffer)
mark the old buffer as free
return

Double Buffering is discussed in greater detail in Chapter 4, section 10.

In general the DMA buffer format consists of a 32-bit address tag description word followed by one or more
data words. The DMA buffer consists of one or more sets of these formats. The following paragraphs
describe the different types of tag description words that can be used.

3.2.2.3 DMA Tag Description Format
When DMA is performed each 32-bit tag description in the DMA buffer conforms to the following format:

A packet is made up of a header followed by some number of data items. The format of the header is:

Bits Field Description

���� 2IIVHW� ,QGH[�LQWR����WDJV�LQ�HDFK�JURXS�

����� *URXS� ���WDJV�XVXDOO\�JURXSHG�E\�DVVRFLDWLRQ�

������ 7\SH� 7\SH�RI�SDFNHW���

�� �KROG�WDJ� �� �LQFUHPHQW�WDJ�

�� �LQGH[HG�WDJ� �� �UHVHUYHG�

������ &RXQW�RU�PDVN� 0HDQLQJ�FKDQJHV�ZLWK�W\SH�RI�SDFNHW�

Figure 3.1 DMA Tag Description Format

There are 3 different tag addressing modes for DMA: hold, increment and indexed. The different DMA
modes are provided to reduce the amount of data which needs to be transferred, hence making better use
of the available DMA bandwidth.

Hold: Tag formed from group and offset, kept constant for the next count + 1 data items.

Increment: Tag formed from group and offset, incremented by one for each of the next count + 1 data
items.

Index: Tag formed from group (offset ignored) and mask showing which of the 16 tags in the group
are valid. Tags formed in incrementing order and paired with the data.

These are described in DMA Tags below.

3.2.2.4 DMA and Security
To avoid accidental writes during DMAs to registers which can hang the entire graphics pipeline, Permedia4
supports a security mode. When the Security register secure bit is set the following tags are filtered out of
DMA command buffers:

FilterMode
VTGAddress
VTGData
Security
DMARectangleWrite
DMAOutputCount
DMAFeedback
ContextDump
ContextRestore
ContextData

3.2.2.5 DMA Tags - Hold Format
In this format the 32-bit tag description contains a tag value and a count specifying the number of data
words following in the buffer. The DMA controller writes each of the data words to the same address tag.
This is useful e.g. for image download where pixel data is continuously written to the FrameBuffer. The
bottom 11 bits specify the register to which the data should be written; the high-order 16 bits specify the
number of data words (minus 1) which follow in the buffer and which should be written to the address tag

Video System� � Permedia4 Programmer’s Guide Volume I

3-6 Proprietary and Confidential �(PEFW�

Note: The 2-bit mode field for this format is zero so a given tag value can simply be loaded into the low
order 16 bits.

A special case of this format is where the top 16 bits are zero indicating that a single data value follows the
tag (i.e. the 32-bit tag description is simply the address tag value itself). This allows simple DMA buffers to
be constructed which consist of tag/data pairs. For example to render a horizontal span 10 pixels long
starting from (2,5) the DMA buffer could look like this:

6WDUW;'RP�

��������

6WDUW<�

��������

6WDUW;6XE�

���������

&RXQW�

��

5HQGHU�

�WUDSH]RLG�UHQGHU�FRPPDQG��

3.2.2.6 DMA Tags - Increment Format

DGGUHVV�WDJ�ZLWK�&RXQW Q����0RGH ��

YDOXH���

����

YDOXH�Q�

This format is similar to the Hold format except that as each data value is loaded the address tag is
incremented (the value in the DMA buffer is not changed; Permedia4 updates an internal copy). Thus, this
mode allows contiguous Permedia4 registers to be loaded by specifying a single 32-bit tag value followed
by a data word for each register.

The low-order 11 bits specify the address tag of the first register to be loaded. The 2 bit mode field is set to
1 and the high-order 16 bits are set to the count (minus 1) of the number of registers to update. To enable
use of this format, the Permedia4 register file has been organized so that registers which are frequently
loaded together have adjacent address tags. For example, the 32 AreaStipplePattern registers can be
loaded as follows:

$UHD6WLSSOH3DWWHUQ���&RXQW ����0RGH ��

URZ���ELWV�

URZ���ELWV�

����

URZ����ELWV�

3.2.2.7 DMA Tags - Indexed Format
Permedia4 address tags are 11 bit values. For the purposes of the Indexed DMA Format they are organized
into major groups and within each group there are up to 16 tags. The low-order 4 bits of a tag give its offset
within the group. The high-order bits give the major group number. The Permedia4 Reference Guide
(chapter 6) lists the individual registers with their Major Group and Offset.

This format allows up to 16 registers within a group to be loaded while still only specifying a single address
tag description word.

DGGUHVV�WDJ�ZLWK�0DVN��0RGH ��

YDOXH���

����

YDOXH�Q�

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 3-7

If the Mode of the address tag description word is set to Indexed mode then the high-order bits are used as
a mask to indicate which registers within the group are to be used. The bottom 4 bits of the address tag
description word are unused.

The group is specified by bits 4 to 8. Each bit in the mask is used to represent a unique tag within the
group. If a bit is set then the corresponding register will be loaded. The number of bits set in the mask
determines the number of data words that should be following the tag description word in the DMA buffer.
The data is stored in order of increasing corresponding address tag. For example,

�[������)��

YDOXH���

YDOXH���

YDOXH���

The Mode bits are set to 2 so this is indexed mode. The Mask field (0x0032) has 3 bits set so there are
three data words following the tag description word. Bits 1, 4 and 5 are set so the tag offsets are 1, 4 and 5.
The major group is given by the bits 4-8 which are 0x0F (in indexed mode bits 0-3 are ignored). Thus the
actual registers to update have address tags 0x0F1, 0x0F4 and 0x0F5 corresponding to registers dRdx,
dGdx and dRdyDom. These are updated with value 1, value 2 and value 3 respectively.

3.2.2.8 DMA Example
The following pseudo-code example shows how to draw a series of rectangles using the DMA controller.
This example uses a single DMA buffer and the simplest case which is Hold Mode for the tag description
words in the buffer.

UINT32 *pbuf;
DMAAddress(physical address of dma_buffer)
while (*DMACount != 0)
 ; // wait for DMA to complete
pbuf = dma_buffer;

*pbuf++ = Permedia4TagdXDom;
*pbuf++ = 0;
*pbuf++ = Permedia4TagdXSub;
*pbuf++ = 0;
*pbuf++ = Permedia4TagdY;
*pbuf++ = 1 << 16;
for (i = 0; i < nrects; ++i) {
 *pbuf++ = Permedia4TagStartXDom;
 *pbuf++ = rect->x1 << 16; // Start dominant edge
 *pbuf++ = Permedia4TagStartXSub
 *pbuf++ = rect->x2 << 16; // Start of subordinate
 *pbuf++ = Permedia4TagCount;
 *pbuf++ = rect->y2 - rect->y1;
 *pbuf++ = Permedia4TagYStart;
 *pbuf++ = rect->y1 << 16;
 *pbuf++ = Permedia4TagRender;
 *pbuf++ = Permedia4_TRAPEZOID_PRIMITIVE;
}
// initiate DMA
DMACount((int)(pbuf - dma_buffer))

The example assumes that a host buffer has been previously allocated and is pointed at by “dma_buffer”.

3.2.2.9 DMA Buffer Addresses
Host software must generate the correct DMA buffer address for the DMA controller. Normally this means
that the address passed to Permedia4 must be the physical address of the DMA buffer in host memory. The
buffer must also reside at contiguous physical addresses as accessed by Permedia4. On a system which
uses virtual memory for the address space of a task, some method of allocating and mapping contiguous
physical memory within this space must be used.

Video System� � Permedia4 Programmer’s Guide Volume I

3-8 Proprietary and Confidential �(PEFW�

Note: This does not apply to Virtual Texturing using the TextureDownloadControl register with
SlaveTexture enabled for DMA texel data. Texture pages are relocatable and do not need to be
contiguous in local memory.

If the virtual memory buffer maps to non-contiguous physical memory then the buffer must be divided into
sets of contiguous physical memory pages and each of these sets transferred separately. In such a
situation the whole DMA buffer cannot be transferred in one go; the host software must wait for each set to
be transferred. Often the best way to handle these fragmented transfers is via an interrupt handler.

3.2.2.10 DMA Interrupts
Permedia4 provides interrupt support as an alternative means of determining when a DMA transfer is
complete. If enabled, the interrupt is generated whenever the DMACount�register changes from having a
non-zero to having a zero value. Since the DMACount�register is decremented every time a data item is
transferred from the DMA buffer this happens when the last data item is transferred from the DMA buffer:
case CommandInterruptTag:
 if (Data != 0)
 {
 // Assert interrupt at end of current output DMA.
 if (CheckFifoEmpty(PciWriteControlFifo))
 {
 HICommandInterrupt = True;
 Code = True;
 }
 else
 Code = False;
 }
 else
 {
 HICommandInterrupt = True;
 Code = True;
 }
 break;

To enable the DMA interrupt, the OutputDMA bit must be set in the CommandDMA register. The interrupt
handler should also check the ControlDMA flag bit in the IntFlags register to determine that a DMA interrupt
has actually occurred. To clear the interrupt, reset the flag by writing a 1 to the IntFlags ControlDMA flag
bit.

A typical use of DMA interrupts might be as follows:
prepare DMA buffer
DMACount(n); // start a DMA transfer
prepare next DMA buffer
while (*DMACount != 0) {
 mask interrupts
 set DMA Interrupt Enable bit in IntEnable register
 sleep on interrupt handler wake up
 unmask interrupts
}
DMACount(n) // start the next DMA sequence

The interrupt handler could then be:
if (*IntFlags & DMA Flag bit) {
 reset DMA Flag bit in IntFlags
 send wake up to main task
}

Interrupts are complicated and depend on the facilities provided by the host operating system. The above
pseudocode only hints at the system details.

This scheme frees the host processor for other work while DMA is being completed. Since the overhead of
handling an interrupt is often quite high for the host processor, the scheme should be tuned to allow a
period of polling before sleeping on the interrupt.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 3-9

3.2.2.11 Using Run Length Encoding
Image data frequently contains runs of the same pixel data. Run Length Encoding (RLE) is a convenient
image compression method which counts adjacent identical pixel values instead of replicating them. This
does not speed up the image transfer from the core’s viewpoint (it still needs to read the data) but it reduces
the amount of data carried over the PCI bus and, potentially, the host effort in processing/copying the image
data.

When run length encoding is enabled then any data (but not tags) which matches the 32 bit run length
value is added to the run length count instead of being written to the FIFO. The accumulated run length is
written to the FIFO when:
• The new 32 bit word is different from the run being encoded.
• A new scanline is started.
• The end of the primitive occurs.
The amount of data produced during the run length encoding is not known when the DMA controller is set
up so an alternative mechanism is used to tell the DMA controller the upload data has finished. This is
done by using the EndOfFeedback command. When detected in the DMA controller the DMA can be
terminated as all the data has been received.

Tags are not included in the FIFO and an extra bit (on the FIFO width) is used to tell the DMA controller to
finish. This bit is only set when an EndOfFeedback tag is received during RLE processing. This allows run
length data to be uploaded at twice the rate available with an external DMA controller.

Note: There is the potential for the software to hang if the Permedia4 Output DMA controller is in
feedback mode and the RunLengthEncodeData bit is not set.

If the RLE bit is not set during Feedback mode DMA, the EndOfFeedback tag is ignored by the DMA
controller, hence the software will not be informed the upload has finished. The graphics core, etc. will
continue to function as normal but the Output DMA controller will loop forever discarding data once the
buffer count has expired. If the software is running with a time-out the Output DMA controller can be
recovered by setting the RunLengthEncodedData bit in the FilterMode register and sending an
EndOfFeedback.

Note: This situation only arises during Feedback Mode DMA with RLE, since in all other cases the
amount of data to load is known.

Software must make allowance for the fact than run length encoding is not guaranteed to result in a smaller
representation of the image and in the worst case could double the size.

Run length encoding is done 32 bits at a time irrespective of the pixel depth and is masked by the RLEMask
before the comparison is done. This allows bits in the data to be excluded from the test, e.g. because they
are unused and have ’random’ values. The masked data is returned.

3.2.3 Vertex Loading for Primitives and Data Re-ordering
The I/O units support various strategies to make data loading more efficient including early culling, vertex
loading and texture formatting, described below.

3.2.3.1 Primitives
Further I/O pre-processing may be done if the data represents a primitive. Vertex data for primitives can be
loaded into the Permedia4 graphics memory space in a number of ways. It can be:
• written directly to the appropriate vertex store
• loaded indirectly from an index into a vertex array, or
• loaded as part of a special vertex sequence corresponding to one of the following primitive types:

1DPH� 'HVFULSWLRQ�

7ULDQJOH/LVW� ,QGLYLGXDO�WULDQJOHV�ZLWK�QR�VKDUHG�YHUWLFHV��

7ULDQJOH)DQ� 7ULDQJOHV�ZLWK�D�FRPPRQ�FHQWHU�YHUWH[��DQG�DQRWKHU�VKDUHG�YHUWH[�EHWZHHQ�HDFK�

DGMDFHQW�WULDQJOH��

7ULDQJOH6WULS� 7ULDQJOHV�ZLWK�WZR�VKDUHG�YHUWLFHV�EHWZHHQ�DGMDFHQW�WULDQJOHV��

/LQH/LVW� ,QGLYLGXDO�OLQHV�ZLWK�QR�VKDUHG�YHUWLFHV��

/LQH6WULS� /LQHV�MRLQHG�KHDG�WR�WDLO��

3RLQW/LVW� ,QGLYLGXDO�SRLQWV�

Video System� � Permedia4 Programmer’s Guide Volume I

3-10 Proprietary and Confidential �(PEFW�

Each of these is available in an indexed form (e.g. IndexedTriangleList) and a vertex form (e.g
VertexTriangleList). The indexed form specifies vertices through an index into a vertex array; the vertex
form specifies a vertex array directly, so the vertices must be in the correct order.

The register tag marks the start of a primitive and the data field is a count of the number of vertices to be
processed. If the number is zero then the data is assumed to be inline and the primitive is terminated by
another primitive command.

IndexedVertex or IndexedDoubleVertex can be used as inline indices into a vertex array by first sending
the IndexedTriangleList primitive (for example) with data equal to zero. IndexedVertex supplies a single
32 bit index into the array, IndexedDoubleVertex supplies two 16 bit indices into the vertex array.

The vertex data can be loaded without specifying a primitive type using Vertex0, Vertex1, and Vertex2.
These registers specify the vertex store to load, and the data field holds the index into the array. The
VertexData register is used for inline vertex data.

The format of the vertex is specified by four controls:
• The vertex size controls the amount of memory each vertex takes (i.e. the Stride).
• The tag list describes the order of the data within the vertex, so the tag loaded into TagList0 defines the

data type of the first entry in the vertex.
• The VertexFormat mask controls which data elements are present, so if bit 0 is clear but bit 1 set, the

first data element read is associated with TagList1 instead of TagList0.
• The VertexValid mask specifies which items of data within the current vertex should be read.
Typically we would use the tag list to define the order in which data is delivered. The format mask and
vertex size set modes (so if z is enabled the z bit in the format mask is set and the vertex size increased by
1).

The VertexValid mask is generally used for multi-pass algorithms, such as emulation of multiple textures.
The vertex structure holds several sets of texture coordinates for the same x,y,z coordinates, and on each
pass a different set is enabled by defining it as valid. Because invalid data is discarded the format only
needs to recognize a single field (although the vertex size must be big enough to include all data).

A state register supports context switching within a primitive. This allows a primitive such as a triangle strip
to be interrupted part way through and then restarted cleanly. If data is being read by DMA it completes
before a sync can get through the pipeline: this applies to single vertices read in by inline indexes and to
multiple vertices read in via index arrays.

To restart an interrupted primitive the HostInState register should be restored along with the rest of the
pipeline and the primitive continued from the point at which it was broken.

A simple 2D line primitive is enabled by setting the Line2D bit in the VertexControl register. This works in
conjunction with LineList or LineStrip and the LineCoord01 and LineCoord10 registers. Only XY data
(packed in one word) can be sent in this mode. The contents of the tag list are ignored.

3.2.3.2 Data Re-ordering
In addition to vertex processing, I/O processing supports data re-ordering for a write combined FIFO. Up to
64 bytes (16x32 bit words) can be sent out of order, stored, and issued in the correct order. Write combined
acesses are identified by the address space they are sent to, and this is passed down the input FIFO by a
flag. Typically:

// Special case input fifo including write combined flag.
struct InputFifo
{
 INT32 Data[32][4];
 INT11 Tag[32][4];
 INT1 WriteCombined[32][4];
 INT1 Enables[32][4];
};

A counter cycles through the the registers trying to write them out in ascending order. While the next
register required is flagged "not valid" the process locks.

Note: This mechanism assumes that the maximum amount of write buffering in the CPU is 64 bytes
and that the if multiple buffers are supported they are flushed according to address.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 3-11

3.2.4 Backface Cull and Texture Setup Functions
In addition to vertex loading and re-ordering, it is possible to cull triangles facing away from the viewer to
avoid unnecessary rendering overheads5. This is controlled by the backfacecull bit in the DeltaMode
register and by the TextureEnable and RejectNegativeFace bits in the DrawTriangle command.

Note: Backface cull was supported in Permdia3, but in Permedia4 it is implemented ahead of the delta
unit to avoid loading vertex data for a triangle that will subsequently be culled.

A typical backface cull algorithm would be:
ScreenArea = dXac * dYbc – dXbc * dYac;
 if (ScreenArea is negative or zero && RejectNegativeFace)
 abort processing and discard draw command;
 else if (ScreenArea is positive or zero && !RejectNegativeFace)
 abort processing and discard draw command;
 else
 continue processing;
 where:
 dXac = a.x – c.x; // etc for each parameter.

3.2.4.1 Texture Setup
When texture is enabled in the DeltaMode register and the relevant Draw command, Permedia4 can also
perform some texture optimization functions:
• ForceQ - used in unusual cases where the application does not want perspective correction of textures

and either does not supply equal Q values or supplies no Q at all. Permedia4 either over-rides or
makes up the numbers as appropriate.

• EqualQ - used to avoid rounding problems where the chip encounters calculations of the form 1/(1/x)
and x isn't a power of 2.

• Share S,T,Q - used to provide S, T or Q values for the second texture when multitexturing if the
application only supplies data for texture 0 but indicates that both textures should use the same set of
texture coordinates.

These functions are enabled in the DeltaFormatControl register - for details see the Permedia4 Reference
Guide volume II.

3.2.4.2 Texture Wrap
Generally, textures are interpolated linearly from start value to end value under Direct3D rules. (For a
general description of Texture Interpolation and Level of Detail (LOD) principles please refer to the
Permedia4 Programmer’s Guide volume II, section 5.2) For cylindrical objects, texture interpolation neds to
take the shortest distance from start value to end value.

The implementation looks at the difference in texture co-ordinates along the one edge and if it is greater
than ½ then 1.0 is subtracted from the start value. If the difference is less than –½ then 1.0 is added to the
start value. The effect of these operations is to move the start value to the ‘other side’ of the end value, so
the direction of interpolation is flipped. The operation is repeated for n-1 sides, where n is the number of
vertices in the primitive.

Note: Tthis relies on texture units downstream handling co-ordinates outside the range 0 to 1 and
repeating the texture accordingly. This is done for each set of texture co-ordinates individually.

The algorithm for triangles is:
 if ((a.s – c.s) > 0.5)
 a.s -= 1.0;
 else if ((a.s – c.s) < -0.5)
 a.s += 1.0;

 if ((b.s – c.s) > 0.5)
 b.s -= 1.0;
 else if ((b.s – c.s) < -0.5)
 b.s += 1.0;

The algorithm for lines is:

 if ((a.s – b.s) > 0.5)
 a.s -= 1.0;

5 A D3D compliance requirement

Video System� � Permedia4 Programmer’s Guide Volume I

3-12 Proprietary and Confidential �(PEFW�

 else if ((a.s – b.s) < -0.5)
 a.s += 1.0;

Texture co-ordinates for points are not modified.

3.2.4.3 Per-poly Mipmapping
Polygon Mipmapping generates a Level of Detail (LOD) value for the x,y area of an entire triangle. This
requires determining a ratio between the triangle area and the projected area in the texture map taken from
the S,T coordinates. The ratio determines the LOD value which is sent to the downstream texture units.

The calculation is as shown below.

Note: The triangle x,y area has already been calculated if Backface Cull is enabled.

 ScreenArea = dXac * dYbc – dXbc * dYac;
 TextureArea = (dSac * dTbc – dSbc * dTac) * TextureLODScale;
 LOD = (exponent of texture area – exponent of screen area) / 2;
 if (LOD < 0)
 LOD = 0;
 if (LOD > 0xF)
 LOD = 0xF;
 // LOD is 4.8 format, fraction always set to zero.
 LOD <<= 8;
 where:
 dXac = a.x – c.x; // etc for each parameter.
 repeat for S1 and T1 using TextureLODScale1.

The LOD is clamped to lie between 0 and 15 inclusive.

Note Subtracting the exponents is an easy way of getting the ratio of the two values. The divide by 2 is
applied because logs of areas are being compared so it is equivalent of a square root.

TextureLODScale is used to control the appearance of the texture; making it larger makes the texture over-
filtered, making it smaller makes the texture under-filtered. This operation is done to both sets of texture co-
ordinates (if enabled) and there is a separate TextureLODScale1 for S1 and T1. For a general discussion
of LOD interpolation refer to Volume II, section 5.2.

When the LOD has been calculated it is sent to the texture coord unit in either the LOD (for S and T) or
LOD1 (for S1 and T1) registers as appropriate.

3.2.4.4 Texture Shift
Texture Shift is a means of recovering significance bits from the integer of a texture to the fraction part
where the integer has become very large relative to the range (e.g. 70.0 to 70.5) but is actually redundant
because the texture repeats.

The shift function finds the vertex with the largest Q and subtracts the integer parts of those S,T texture
coordinates from the other vertices' coordinates. The integer part is rounded to an even value to avoid
interference with mirrored textures (refer to Volume II, section 5.2.2.1, Texture Coordinate Wrapping
Modes. Texture Shift is enabled by the DeltaFormatControl register TextureShift bit.

3.2.4.5 Scale by Q
This function multipleis the S,T values for each vertex of a triangle by the vertex's Q value. This anticipates
the Divide by Q operation performed later during perspective correction.

3.3 Output FIFO

An output FIFO provides data readback from Permedia4. Each entry in this FIFO is 32 bits wide and can
hold tag or data values. This differs from the input FIFO whose entries are always tag/data pairs (effectively
41 bits – 9 bits for the tag and 32 bits for the data).

The FilterMode register controls the type of data written to the output FIFO.. This register allows filtering of
output data in various categories including the following:
• Depth: output in this category results from an image upload of the Depth buffer.
• Stencil: output in this category results from an image upload of the Stencil buffer.
• Color: output in this category results from an image upload of the framebuffer.
• Synchronization: synchronization data is sent in response to a Sync command.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 3-13

The FilterMode register uses 2 bits for each category. Setting the least significant bit (0x1) enables output
of the register tag for that category. Setting the most significant bit (0x2) enables output of the data for that
category. If both tag and data output are enabled the tag is written first to the FIFO followed by the data.
The FilterMode register is described in more detail in Chapter 5 - Graphics Programming.

For example, to perform an image upload from the framebuffer the FilterMode register should have output
enabled for the FBColorData bit. Then the rectangular area to be uploaded should be described to the
rasterizer. Each pixel read from the framebuffer is then placed into the output FIFO. If the output FIFO
becomes full Permedia4 blocks internally until space becomes available.

It is the programmer’s responsibility to read all data from the output FIFO. For example, it is important to
know how many pixels should result from an image upload and to read exactly that many from the FIFO.

To read data from the output FIFO the OutFIFOWords�register should first be read to establish the number
of entries in the FIFO (reading from the FIFO when it is empty returns undefined data). Then read the same
number of 32-bit data items from the FIFO. Repeat the procedure until all the expected data or tag items
have been read. The address of the output FIFO is described below.

Note: All expected data must be read back. The graphics core will block if the FIFO becomes full.
Programmers must be careful to avoid the deadlock condition that will result if the host is
waiting for space to become free in the input FIFO while Permedia4 is waiting for the host to
read data from the output FIFO.

3.4 Other Interrupts

Permedia4 also provides interrupt facilities for the following:
• Sync: If a Sync command is sent and the Sync interrupt has been enabled then once all rendering has

been completed, a data value is entered into the Host Out FIFO, and a Sync interrupt is generated
when this value reaches the output end of the FIFO. Synchronization is described further in the next
section.

• External: this provides the capability for external hardware on a Permedia4 board (such as an external
video timing generator) to generate interrupts to the host processor.

• Error: if enabled the error interrupt will occur when Permedia4 detects certain error conditions, such as
an attempt to write to a full FIFO.

• Vertical Retrace: if enabled a vertical retrace interrupt is generated at the start of the video blank
period.

Each of these are enabled and cleared in a similar way to the DMA interrupt. See IntEnable in the
Permedia4 Reference Guide for more details.

3.5 Synchronization

There are three main cases where the host must synchronize with the graphics core:
1. before reading back from registers
2. before directly accessing the framebuffer or the localbuffer via the bypass mechanism
3. framebuffer management tasks such as double buffering (though this may be better handled using the

SuspendUntilFrameBlank command).6

Synchronizing with Permedia4 implies waiting for any pending DMA to complete and waiting for the chip to
complete any processing currently being performed. The following pseudo-code shows the general scheme:

Permedia4Data data;
// wait for DMA to complete
while (*DMACount != 0) {
 poll or wait for interrupt
}
while (*InFIFOSpace < 2) {
 ; // wait for free space in the FIFO
}
// enable sync output and send the Sync command
data.Word = 0;
data.FilterMode Synchronization = 0x1;
FilterMode(data.Word);
Sync(0x0);

6 And ref Permedia4 Errata and Alerts, PEREN004 - Check FIFO space before sending HostIn DMA commands.

Video System� � Permedia4 Programmer’s Guide Volume I

3-14 Proprietary and Confidential �(PEFW�

/* wait for the sync output data */
do {
 while (*OutFIFOWords == 0)
 ; // poll waiting for data in output FIFO
} while (*OutputFIFO != Sync_tag);

Initially we wait for DMA to complete as normal. We then also have to wait for space to become free in the
FIFO (since the DMA controller actually loads the FIFO). We need space for 2 registers: one to enable
generation of an output sync value, and the Sync command itself. The enable flag can be set at
initialization time. The output value will be generated only when a Sync command has actually been sent,
and Permedia4 has then completed all processing.

Rather than polling it is possible to use a Sync interrupt as mentioned in the previous section. As well as
enabling the interrupt and setting the filter mode, the data sent in the Sync command must have the most
significant bit set in order to generate the interrupt. The interrupt is generated when the tag or data reaches
the output end of the Host Out FIFO. Use of the Sync interrupt has to be considered carefully as Permedia4
will generally empty the FIFO more quickly than it takes to set up and handle the interrupt.

3.6 Host Framebuffer Bypass

Normally, the host will access the framebuffer indirectly via commands sent to the FIFO interface. However,
Permedia4 maps the complete framebuffer as a linear 32-bit addressable memory region. Access to the
framebuffer via this memory mapped route is independent of the Permedia4 FIFO.

Drivers may choose to use direct access to the framebuffer for algorithms which are not supported by
Permedia4. The framebuffer bypass supports big-endian, little-endian and GIB-endian formats. These are
described in a later section.

A driver making use of the framebuffer bypass mechanism should synchronize framebuffer accesses made
through the FIFO with those made directly through the memory map. If data is written to the FIFO followed
by a direct access to the framebuffer, the FIFO may not have had a chance to complete before the bypass
access happens.

Once mapped in, the framebuffer can be read or written with 8, 16 or 32-bit accesses. Permedia4 does not
use bank switching since it is a PCI device and the PCI bus provides a 32 bit address space7.

The framebuffer is accessible via Regions 1 and 2 of the PCI address map.!

3.6.1 Framebuffer Dimensions and Depth
Address calculation is controlled by the FBWriteMode register and the address is a function of X, Y,
FBWriteBufferAddr, FBWriteBufferOffset, FBWriteBufferWidth and PixelSize parameters. The X and Y
parameters are passed in the active fragment or span registers. The Address, Offset and Width are
specified independently for each of the write buffers defined in LBWriteFormat.

The address calculation is further modified by the mode bits: Origin, StripePitch, StripeHeight and Layout.

Once the framebuffer parameters have been defined, determining the visible screen width and height
becomes a clipping issue. The visible screen width and height are set up in the ScreenSize register and
enabled by setting the ScreenScissorEnable bit in the ScissorMode register.

The framebuffer depth (8, 16 or 32-bit) is controlled by the PixelSize register. This register provides a 2 bit
field to control which of the three pixel depths is being used. The pixel depth can be changed at any time
without the need for any synchronization but should normally be set at initialization.8

3.7 Host Localbuffer Bypass

As with the framebuffer, the localbuffer can be mapped in and accessed directly. The host should
synchronize with Permedia4 before making any direct access to the localbuffer.

7On address limited buses such as ISA, devices limit the amount of address space that they occupy by using bank switching
hardware. This typically provides a 64K byte window through which part of the framebuffer is visible. The region 0 Video Stream
hardware registers define which part of the framebuffer is visible through this window - refer to the Permedia4 Reference Guide,
chapter 4.
8 On earlier systems without span operation it was useful to change the pixel depth temporarily to optimize some 2D rendering
operations. This is no longer necessary but code written to use the technique will continue to work provided pixel size is set using
the PixelSize register.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 3-15

In Permedia4, Localbuffer access is defined as reads from up to four mappable destinations, or writes to a
single mappable destination. Addresses for reads and writes are managed locally, i.e. the base address,
offset value and width are not shared with the read address generation.

Localbuffer management facilities are described in section 4.2 - Localbuffer. The localbuffer is accessible
via Regions 1 and 3 of the PCI address map. Localbuffer bypass supports big-endian and little-endian
formats, described in Byte Swapping, below.

3.8 Register Read back and Context Dump/Restore

In some operating environments multiple tasks want access to the Permedia4 chip. Sometimes a server
task or driver wants to arbitrate access to Permedia4 on behalf of multiple applications. In other situations
a host process may wish to extract specific information on the fly, usually for diagnostic purposes. In both
these cases register readback is required, but in the former a simple global context switch is involved, while
in the other we want selective readback.

3.8.1 Context Dump/Restore
To perform a context switch the host must first synchronize with Permedia4. This means waiting for any
outstanding DMAs to complete, sending a Sync command and waiting for the sync output data to appear in
the output FIFO.

In Permedia4, Context switching is supported by a new dedicated register group: ContextData,
ContextDump, and ContextRestore.

The ContextDump command forces the Permedia4 to dump the selected context. Context switching can
be done on any command boundary but not during internal processing or texture/image downloads.

Note: Care must be taken when context switching a task which is making use of continue-draw
commands. Continue-draw commands rely on the internal registers maintaining previous state.
Any rendering work for a new task destroys the previous state. To prevent this, continue-draw
commands should be performed via DMA where possible since the context switch code has to
wait for outstanding DMA to complete. Alternatively, continue-draw commands can be
performed in a non-preemptable code segment.

The context is dumped over the full length of the graphics pipeline by the ContextDump command and
restored by the ContextRestore command.

The data sent with this command (the context mask) dictates what subset of the full context is to be
dumped. The context for each unit is defined by the Context Mask. It appears in the Host Output FIFO
tagged as ContextData where the host of the output DMA controller can read it. The amount of data sent
depends on the context mask sent with the command. The last tag and data sent to the FIFO is the
ContextDump tag and mask, but this is not included in the word counts above.

Usually, the intention is to restore a context exactly as it was saved earlier. For paired context dump and
restore operations the same mask is used for both dump and restore commands.

For further information see the ContextRestore, EndofFeedback, FilterMode and ContextData register
descriptions in the Permedia4 Reference Guide.

3.8.2 Register Readback
To read a Permedia4 register the host reads the same address which would be used for a write, i.e. the
base address of the register file plus the offset value for the register. See the warning in Context Dump,
above, about state preservation with Continue commands.

Normally, reading back individual registers should be avoided. The need to synchronize with the chip can
adversely affect performance. It is usually more efficient to keep a software copy of the register which is
updated when the actual register is updated.

3.9 Byte Swapping

Internally Permedia4 operates in little-endian mode. However, it is designed to work with both big- and little-
endian host processors. Since the PCI Bus specification defines that byte ordering is preserved regardless
of the size of the transfer operation, Permedia4 provides facilities to handle byte swapping. The choice of
mapping typically depends on the endian ordering of the host processor.

The Control Space in PCI address region 0, is 128K bytes in size and consists of two 64K spaces. The first
64K provides little endian access to the control space registers; the second 64K provides big endian access
to the same registers (or, alternatively, can be configured as a Write-Combine buffer).

Video System� � Permedia4 Programmer’s Guide Volume I

3-16 Proprietary and Confidential �(PEFW�

The Configuration Space may be set using reset pin VSBData(3) 9 to be either little endian or big endian.
The same effect can be achieved by resetting the WCEnable bit in the ChipConfig register.

Additional support is provided within Permedia4 to byte swap images and bitmasks as they are transferred
to and from the host, in particular:
• ControlDMAControl
• ByApertureOneMode / ByApertureTwoMode
• ByDMAReadMode
• ByDMAWriteMode
• DMARectangleRead
• DMARectangleWrite
• RasterizerMode
• TextureReadMode
Byte swapping may be on a 32-bit word, 16-bit word or byte offset depending on the register and use. See
the Permedia4 Reference Guide, chapter 4, for more details of these control registers.

3.10 Red and Blue Color Ordering

For a specific graphics board the RAMDAC and/or API will usually force an interpretation for true color pixel
values. For example, 32-bit pixels will be interpreted as either ARGB (alpha at byte 3, red at byte 2, green at
byte 1 and blue at byte 0) or ABGR (blue at byte 2 and red at byte 0). The byte position for red and blue
may be important for software which has been written to expect one byte order or the other, in particular
when handling image data stored in a file.

Permedia4 allows color ordering to be specified in a number of registers along the pipeline. The
AlphaBlendColorMode register contains a 1-bit field called ColorOrder. If this bit is set to zero then the
byte ordering is BGR; if the bit is set to one then the ordering is RGB. As well as setting this bit for
AlphaBlend work it must also normally be set in the Color Formatting unit, though in some cases it may be
useful to set them differently. The DitherMode register contains a ColorOrder bit with the same
interpretation. The order applies to all of the RGB pixel formats, regardless of the pixel depth.

Image and bitmask data can also be optionally byte/word swapped as part of the download process by
setting the appropriate bit in the RasterizerMode register. Similarly the LUTMode register allows extensive
color order and format conversion. Finally image data can be optionally byte/word swapped by setting the
appropriate bit in the FilterMode register of the Host Out unit. These operations are controlled
independently of DMA byte swapping operations.

9 ...where 0 = Upper half of region Zero is byte-swapped, or 1= Upper half of region Zero flagged internally as write-combined.

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-1

��
����������	
����
����	�����	��

4.1 Introduction

This chapter provides an overview of local and frame buffer implementation and describes virtual texture
mapping and double buffering.

4.2 Localbuffer (LB)

The LB Read Unit is connected to the Memory Controller interface to the memory subsystem via a FIFO.
The Permedia4 data bus width in the LB Memory is 128 bits, as it is for the Framebuffer.

The information passed includes:
• The target memory (FB, LB or PCI)
• The required control/write action
• The write address
• Any Byte Enables (see LBDestReadEnables in the Permedia4 Reference Guide)
• Data to be written
The localbuffer holds per-pixel information corresponding to each displayed pixel:

� Graphic ID (GID)
� Depth ("Z")
� Stencil
...which may be handled as pixel read/writes or as spans of 4 consecutive words.

The values are referred to as fields because they contain pixel parameter data in a structured format.
Conceptually, they can be thought of as buffers or planes. The possible formats for each of these and their
use are described below.

4.2.1 Localbuffer Management
With unified Permedia4 memory the Localbuffer can be considered a functional package rather than a
predefined area of memory or distinct device type. Specifically, localbuffer functions include:
• Managing the read from a destination memory buffer,
• Managing the read from a source memory buffer,
• Managing the updates to the buffer,
• Calculating the write address of the fragment in the memory,
• Combining multiple fragments in the same memory word,
• Calculating the write addresses of the spans in the memory,
• Aligning span clears and issuing multiple normal writes,
• Calculating the read address(es) of the fragment in the memory,
• Caching memory data to reduce actual memory accesses,
• Prefetching data when possible,
• Calculating the read addresses of the spans in the memory,
• GID testing single pixels (from steps) or multiple pixels (spans)
• Interfacing to the Memory Controller,
• Formatting memory data into a standard Z, stencil and GID format.
An optimization in Stencil and Depth functionality avoids unnecessary writes when the LBWrite contents
are the same as those currently in memory.

4.2.2 Layout
The LBWriteMode Layout field selects how data is to be laid out in memory. The options are:

� Linear. Here the rows are stored contiguously, one after another in memory.

� Patched64. In this layout the pixel data is arranged into 64x16 pixel "patches" or tiles if the buffer depth
is 32 bpp, up to 128x16 pixels for 16 bpp buffer configurations. This is the preferred layout for the
depth, etc. buffer to give equal access times for X and Y paths. Note the memory page size is 1Kx32
bits so patching keeps page loads to a minimum. This also matches a patch format used for
Framebuffer functions.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-2 Proprietary and Confidential �(PEFW�

Localbuffer memory itself can be from 16 bits (assuming a depth plane is always needed) to 48 bits wide in
steps of 4 bits. Each location in one field/plane is contiguous with the corresponding location in the
adjacent field/plane; for example, GID0, Depth0, Stencil0, GID1, Depth1, Stencil1 etc. The allowed lengths
and positions of the fields supported in the localbuffer are shown in the LBReadFormat register description
below:

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-3

1DPH� 7\SH� 2IIVHW�)RUPDW�

/%5HDG)RUPDW� /RFDOEXIIHU� �[����� %LWILHOG�

� &RQWURO�UHJLVWHU� �

� � � �

%LWV�

�

1DPH� 5HDG� :ULWH� 5HVHW� 'HVFULSWLRQ�

�«�� 'HSWK:LGWK� ✔ ✔ [� 7KLV�ILHOG�VSHFLILHV�WKH�ZLGWK�RI�WKH�GHSWK�ILHOG���7KH�
GHSWK�ILHOG�DOZD\V�VWDUWV�DW�ELW�SRVLWLRQ�����7KH�ZLGWK�
RSWLRQV�DUH��
� �� ����ELWV� �� ����ELWV�
� �� ����ELWV� �� ����ELWV�
:KHQ�WKH�GHSWK�ZLGWK�LV����WKH�*,'�DQG�6WHQFLO�ILHOGV�
DUH�LJQRUHG�DQG�D�RQH�ELW�*,'�DQG�6WHQFLO�DUH�WDNHQ�
IURP�ELW������2QO\�RQH�RI�WKH�*,'�RU�6WHQFLO�
RSHUDWLRQ�DUH�HQDEOHG�WR�VHOHFW�WKH�GHVLUHG�ILHOG�W\SH��

�«�� 6WHQFLO:LGWK� ✔ ✔ [� 7KLV�ILHOG�VSHFLILHV�WKH�ZLGWK�RI�WKH�VWHQFLO�ILHOG���7KH�
OHJDO�UDQJH�RI�YDOXHV�DUH��«����7KH�VWHQFLO�ILHOG�DOZD\V�
VWDUWV�DW�ELW�SRVLWLRQ�JLYHQ�LQ�WKH�QH[W�ILHOG���

�«��� 6WHQFLO3RVLWLRQ� ✔ ✔ [� 7KLV�ILHOG�KROGV�SRVLWLRQ�RI�WKH�OHDVW�VLJQLILFDQW�ELW�RI�
WKH�VWHQFLO�ILHOG���7KH�OHJDO�UDQJH�RI�YDOXHV�DUH��«����
UHSUHVHQWLQJ�ELW�SRVLWLRQV���«���UHVSHFWLYHO\��

��«���)&3:LGWK� �� �� [� 5HVHUYHG��

��«���)&33RVLWLRQ� �� �� [� 5HVHUYHG�

��«��� *,':LGWK� ✔ ✔ [� 7KLV�ILHOG�VSHFLILHV�WKH�ZLGWK�RI�WKH�*UDSKLFV�,'�ILHOG���
7KH�OHJDO�UDQJH�RI�YDOXHV�DUH��«����7KH�*,'�ILHOG�
DOZD\V�VWDUWV�DW�ELW�SRVLWLRQ�JLYHQ�LQ�WKH�QH[W�ILHOG���

��«��� *,'3RVLWLRQ� ✔ ✔ [� 7KLV�ILHOG�KROGV�SRVLWLRQ�RI�WKH�OHDVW�VLJQLILFDQW�ELW�RI�
WKH�*UDSKLFV�,'�ILHOG���7KH�OHJDO�UDQJH�RI�YDOXHV�DUH�
�«����UHSUHVHQWLQJ�ELW�SRVLWLRQV���«���UHVSHFWLYHO\��

The order of the planes/fields is as shown above with the depth field at the least significant end and GID
field at the most significant end. The GID is at the most significant end so that various combinations of the
Stencil and depth field widths can be used on a per window basis without the position of the GID fields
moving. If the GID field is in different positions in different windows then ownership tests become
impossible to do.

4.2.3 Pixel Formats
See volume II, section 2.1.7 - Pixel Sizes.

1.1.2 Pixels and Spans
Operations are either single pixel or pixel spans. For a more general discussion of upload, download and
copy for fragments, bitmasks and spans see Volume II, section 1.1.8 - Bitmaps, Spans and Images.

The LB supports two forms of write request:
• Single pixel. This is the normal mode for 3D operation but is only used for exotic 2D operations. The

calculated address is always a pixel address and this is shifted to take into account the width of a pixel
(8, 16 or 32 bits) in calculating the memory address and byte enables. The pixel data is always right
justified within the 32 data bus on input to this unit so is shifted into the correct byte lanes for the
memory. Successive writes to the same memory word (128 bits) are combined so only a single
memory write access is done. The memory write is done when the new fragment is for a new memory
address, or the Render, SuspendReads or a mode change command intervenes.

• Pixel spans. Span operations can be used to write multiple pixels simultaneously in the local buffer. A
span is a group of 64 consecutive pixels starting at the span start address and at rising addresses.
The data written is constant for the span and held in the LBClearDataU and LBClearDataL registers.
The data is replicated to a four pixel memory word. In Packed16 mode (8 pixels per word) software
must replicate the 16 bits of constant data into the 32bit LBClearDataL register. Byte masking is
possible using the LBWriteMode byte enables, provided the field to clear is an aligned multiple of
bytes. If not (e.g. a 3-bit stencil field) then selective clearing requires a read-modify-write loop.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-4 Proprietary and Confidential �(PEFW�

1.1.3 Clearing the Localbuffer using FBWrite
Spans are useful for clearing down the local buffer but do not use any block fill capabilities of the memory.
However Block fill for SGRAM (or its emulation for SDRAM) is available using Framebuffer Write
functionality or emulated in the LB Memory interface. Write mask data is ignored by the LB and requires FB
functions. If the local buffer is implemented in SGRAM then the FB write mask has a resolution to the bit
level so a field with any width or position can be masked to prevent it being cleared during a write only
operation (using the FBWrite registers).

Span operations can also be used to write multiple pixels simultaneously in the local buffer as described in
section 4.2.4 - Pixels and Spans - above. Span operation is enabled using the FastFillEnable bit in the
Render register. For a more general discussion of upload, download and copy for fragments, bitmasks and
spans see Volume II, section 1.1.8 - Bitmaps, Spans and Images.

1.1.4 GID field
The GID field may optionally be used for pixel ownership tests to allow per pixel window clipping. Each
window using this facility is assigned one of the GID values, and the visible pixels in the window have their
GID field set to this value. If the test is enabled the current GID (set to correspond with the current window)
is compared with the GID in the localbuffer for each relevant fragment. If they are equal this pixel belongs to
the window so the localbuffer and framebuffer at this coordinate may be updated. If not, the pixel is left
unchanged.

If the GIDWidth is set to its maximum (4) only 16 GID values are available which limits the number of open
windows which can be tested. Some other methods of achieving the same result are:
• clip the primitive to the window’s boundary (or rectangular tiles which make up the window’s area) and

render only the visible parts of the primitive
• use the scissor test to define the rectangular tiles which make up the window’s visible area and render

the primitive once per tile (This may be limited to only those tiles which the primitive intersects).

It is possible to apply GID testing to LB spans which involves testing the pixels the span represents. This
allows all the span operations to be modified by GIDs but the test can only be done four pixels at a time so
span performance is constrained (but is still four times faster than doing clears, etc., one pixel at a time).

More details on the GID field and related registers may be found in the Permedia4 Reference Guide.

Note: GID planes are distinct from and serve a different purpose to Windows ID planes which are
described later.

1.1.5 Stencil Field
The stencil field holds the stencil value associated with a pixel and can be 0 to 8 bits wide in increments of
1 bit.

The width of the stencil buffer is also stored in the StencilMode register and is needed for clamping and
masking during the update methods. The stencil compare mask should be set up to exclude any absent
bits from the stencil compare operation.

1.1.6 FrameCount Field
The Frame Count Field which controls the Fast Clear Planes mechanism is not supported in Permedia4.
The same result can be achieved using the MinRegion and MaxRegion registers:

1. Record the extent of all updates to the localbuffer and framebuffer using the MinRegion and
MaxRegion registers

2. Use the MinHitRegion and MaxHitRegion commands to send the bounding box of the smallest area
to clear to the FIFO.

For some applications this will be a significantly smaller area than clearing the whole window or screen,
therefore faster.

1.1.7 Texture Map Storage
With the introduction of unified framebuffer memory texture storage becomes a separate topic rather than
an aspect of localbuffer data handling.

Permedia4 implements a virtual demand-page texture management system using 4k pages in conjunction
with other more conventional approaches such as AGP execute mode. Details are given in section 4.3 -
Texture Mapping.

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-5

1.1.8 Source and Destination Reads
Permedia4 supports both source and destination reads. The destination read parameters are normally set
up identically to those used in the LBWrite registers so the same pixel data is read for a given XY
coordinate as will later be written. If the destination reads and writes are set up differently then the
destination read can almost be viewed as a source read as far as copies are concerned.

The reason for the apparent duplication is that distinct source reads are still needed when (for example)
source stencil planes are to replace the destination stencil planes while leaving the depth field
unchanged10.

Source data is sent downstream by the LBSourceData register when any destination reads are enabled for
a fragment. When no destination reads are enabled the source data is carried internally.

4.2.3.1 Address Calculation
The source address calculation is controlled by the LBSourceReadMode register and the address is a
function of X, Y, LBSourceReadBufferAddr, LBSourceReadBufferOffset, width and Packed16
parameters.

The destination address calculation is controlled by the LBDestReadMode register and the address is a
function of X, Y, LBDestReadBufferAddr, LBDestReadBufferOffset, width and Packed16 parameters.

The Localbuffer calculates pixel addresses to convert x,y current step coordinates into linear byte
addresses using different approaches for linear and patched memory. Because conversion for patched
memory is non-trivial we do not recommend bypass accesses to patched (non-linear) memory.

Coordinates can be defined window-relative or screen-relative. This only matters when the coordinates are
converted to an actual physical address. In general the windowing system will use absolute coordinates
and the graphics system will use relative coordinates (to be independent of where the window really is).

In the calculations below, X and Y are the coordinates from the step or span message. The offset, width
and address values are taken from the appropriate buffers details:

1. X, Y are set from the step message.

2. The first step is to add in the buffer offset to the coordinates.
 X = X + offset.x
 Y = Y + offset.y

This offset can be used to convert the window relative coordinates to screen relative. This is only
necessary if the local buffer is patched. If the buffer is linear, the base address of the window (as a byte
address) can be held in LBSourceReadAddr or LBDestReadAddr.

1. The Y coordinate is compressed using the StripePitch and StripeHeight values in LBDestReadMode.
The following diagram shows how the Y bit is interpreted:

2. Y = Y with (StripePitch - StripeHeight) bits chopped out as in the diagram.

3. For linear layout the pixel offset is:
 bottom left origin: -Y * width + X
 top left origin: Y * width + X

10The size and/or alignement may prevent byte masking from being used in a SDRAM local buffer. For an SGRAM local buffer bit
masking via the framebuffer operations can always be used. Also for a P4 with 160 bits of local buffer the framebuffer units cannot
process the extra 32 bits.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-6 Proprietary and Confidential �(PEFW�

The buffer width is in the range 0…4095. For Patch64 the 2D XY coordinate space is mapped to a 1D
address range.

The Origin may be either top left or bottom left as shown in the following diagram:

GUI systems (such as Microsoft Windows, Microsoft Windows NT and The X Window System) usually have
the origin of the coordinate system at the top left corner of the screen but this is not true for all graphics
systems. For instance OpenGL uses the bottom left corner as its origin. The Origin bit in the
LBDestReadMode register selects the top left (0) or bottom left (1) as the origin.

1.1.9 LB Writes
The Localbuffer address calculation is controlled by the LBWriteMode register abd the address is a
function of the current X, Y and the LBWriteBufferAddr, offset, width and Packed16 parameters:

LBWriteMode
LBWriteModeAnd
LBWriteModeOr

1DPH� 7\SH� 2IIVHW�)RUPDW�

/%:ULWH0RGH� /RFDOEXIIHU� �[��&�� %LWILHOG�

/%:ULWH0RGH$QG� /RFDOEXIIHU� �[$&��� %LWILHOG�

/%:ULWH0RGH2U� /RFDOEXIIHU� �[$&��� %LWILHOG�

� &RQWURO�UHJLVWHU� �

%LWV�

�

1DPH� 5HDG

���

:ULWH� 5HVHW� 'HVFULSWLRQ�

�� :ULWH(QDEOH� ✔ ✔ [� 7KLV�ELW��ZKHQ�VHW��FDXVHV�IUDJPHQWV�RU�VSDQV�WR�

ZULWWHQ�WR�WKH�GHVWLQDWLRQ�EXIIHU���1RWH�HDFK�E\WH�PXVW�

DOVR�EH�HQDEOHG�LQ�WKH�%\WH(QDEOHV�ILHOG��

�«�� 5HVHUYHG�� �� �� [� �

�«�� 6WULSH3LWFK� ✔ ✔ [� 7KLV�ILHOG�VSHFLILHV�WKH�QXPEHU�RI�VFDQOLQHV�EHWZHHQ�

WKH�ILUVW�VFDQOLQH�LQ�D�VWULSH�DQG�WKH�ILUVW�VFDQOLQH�LQ�WKH�

QH[W�VWULSH���7KH�RSWLRQV�DUH��

�

�

�

�

7KLV�ILHOG�ZLOO�QRUPDOO\�EH�VHW�WR�]HUR�IRU�3���

�«�� 6WULSH+HLJKW� ✔ ✔ [� 7KLV�ILHOG�VSHFLILHV�WKH�QXPEHU�RI�VFDQOLQHV�LQ�D�VWULSH���

7KH�RSWLRQV�DUH��

�

�

�

7KLV�ILHOG�ZLOO�QRUPDOO\�EH�VHW�WR�]HUR�IRU�3���

11 Logic Op register readback is via the main register only

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-7

�� /D\RXW� ✔ ✔ [� 7KLV�ILHOG�VHOHFWV�WKH�OD\RXW�RI�WKH�SL[HO�GDWD�LQ�

PHPRU\�IRU�WKH��GHVWLQDWLRQ�EXIIHU���7KH�RSWLRQV�DUH��

�

�

��� 2ULJLQ� ✔ ✔ [� 7KLV�ILHOG�VHOHFWV�ZKHUH�WKH�ZLQGRZ�RULJLQ�LV�IRU�WKH�

GHVWLQDWLRQ�EXIIHU���7KH�RSWLRQV�DUH��

�

�

��� 3DFNHG��� ✔ ✔ [� :KHQ�WKLV�ELW�LV�VHW�WKH�SL[HO�VL]H�LV����ELWV�VR�D�VLQJOH�

PHPRU\�ZRUG�FDQ�KROG���GHSWK�YDOXHV��

��«��� :LGWK� ✔ ✔ [� 7KLV�ILHOG�KROGV�WKH�ZLGWK�RI�WKH�GHVWLQDWLRQ�EXIIHU���

,WV�UDQJH�LV��«������

��«��� %\WH(QDEOHV� ✔ ✔ [� 7KLV�ILHOG�KROGV�WKH�E\WH�HQDEOHV�IRU�HDFK�E\WH�LQ�WKH�

SL[HO���$�E\WH�HQDEOH�ELW�PXVW�EH�VHW�IRU�WKH�

FRUUHVSRQGLQJ�E\WH�WR�EH�ZULWWHQ���,GHDOO\�WKH�GHSWK��

VWHQFLO��HWF��ILHOGV�DUH�E\WH�DOLJQHG�DQG�LQWHJUDO�E\WHV�LQ�

OHQJWK�VR�WKHVH�FDQ�EH�XVHG�WR�GLVDEOH�PRGLI\LQJ�D�

ILHOG��RWKHUZLVH�UHDG�PRGLI\�ZULWH�RSHUDWLRQV�ZLOO�QHHG�

WR�EH�GRQH��

��«��� 2SHUDWLRQ� ✔ ✔ [� 7KLV�ILHOG�GHILQHV�ZKHUH�WKH�GDWD�LV�WR�EH�WDNHQ�IURP�WR�

GR�WKH�ZULWH�DQG�ZKDW�LV�WR�KDSSHQ�WR�LW�DIWHUZDUGV���

7KLV�LV�RQO\�RI�LQWHUHVW�GXULQJ�DQ�XSORDG�RU�GRZQORDG�

RSHUDWLRQ���7KH�RSWLRQV�DUH��

�

�

�

�

�

The origin is either top left or bottom left, as for Reads but in the LBWriteMode register.

4.2.3.2 Stripes
LBWrite supports Stripes, which allow more efficient texture cache usage than individual scanlines where
multiprocessor implementations are to be supported in future. Currently the StripePitch and StripeHeight
fields are reserved.

4.2.3.3 Write Combining
Since the memory data width is significantly wider than the pixel widths, it is possible to combine pixels from
the same data word in a wrtie combine buffer (WCB). The WCB is written to memory when the pixel
address changes.

Write combine operation is exactly as for Framebuffer write combining - see section 4.4.6 below.

4.2.3.4 Byte Enables
Mode changes and similar software state changes can have complicated effects on Localbuffer read/write
enabling. The application software usually monitors the state change and enables buffer reads/writes as
required but this is not always possible.

Permedia4 introduces a new register, LBDestReadEnables, whichs allow the user’s software to assign
paired bits to control major mode monitoring and read enables. There are 8 pairs of bits, E0 to E3 and R0
to R3. In a typical case, E0 could be assigned to Depth Enable, R0 set whenever a depth mode requires a
read. E1 could be allocated to Stencil enable, and R1 set whenever a stencil read is required.

The LBDestReadEnables register also supports logical operators (AND, OR). These can be very useful
for, e.g., Windows OGL applications where the bits can be mapped onto the various state changes which
affect whether a read is necessary. Some of the state variables are maintained internally by drivers, others
in the OGL ICD at the user system level. Since the two cannot communicate directly, the AND/OR

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-8 Proprietary and Confidential �(PEFW�

operators allow changes to individual bits in LBDestReadEnables without modifying bits controlled by
another driver or application. This in turn avoids the need for slow ExtEscape calls whenever a state
change takes place.

1.1.9.1 Data Download
LBWriteMode normally downloads data using the SyncOnHostData mechanism in the Render command,
which places downloaded data into the color field of current fragments. However the other LB fields can
also be loaded by setting the LBWriteMode Operation field to Download Depth or Download Stencil:
• If Download Depth is specified, the user-supplied depth data is clamped to fit the range of depth values

supported by the LB format. The other fields are updated from the LB or related registers.
• If Download Stencil is specified, the user-supplied stencil field is masked to fit into the range of stencil

values supported in the LB format. GID and Depth are updated as above.
In both cases, the ByteEnables in LBWriteMode may be usable to control the buffer update if the value is
byte-aligned.

For a more general discussion of upload, download and copy for fragments, bitmasks and spans see
Volume II, section 1.1.8 - Bitmaps, Spans and Images.

1.1.9.2 Data Upload
The LBWriteMode Operation field can also be used to upload Depth or Stencil into the fragment’s color
field before formatting is carried out. The GID data is loaded concurrently.

Note: If non-linear Depth is used then the Z value remains as it was encoded.

Since the data is loaded into the color field, it can be overwritten by subsequent operations which affect the
fragment’s color. E.g. alpha blend. Similarly the FilterMode LBDepth and Stencil fields will be ignored - use
the FBColor field in FilterMode instead.

For a more general discussion of upload, download and copy for fragments, bitmasks and spans see
Volume II, section 1.1.8 - Bitmaps, Spans and Images.

4.3 Framebuffer (FB)

The framebuffer (FB) is a region of memory where the information produced during rasterization is written
prior to being displayed. This information is not restricted to color but can include window control data for
LUT management and double buffering12.

Conceptualy, the FB is more correctly a grouped set of register facilities than a physical pipeline component
or memory device type. With unified memory the FB functionality is very similar to the Localbuffer, however
FB supports additional memory layouts (Patch2, Patched32_2) for texture management etc.

1.1.10 Framebuffer Management
Framebuffer functionality includes:
• Managing updates to and reads from up to 4 destination memory buffers,
• Managing the read from a single source memory buffer,
• Calculating read and write address(es) of fragments in memory,
• Combining multiple fragments in the same memory word,
• Calculating the write addresses of the spans in the memory,
• Aligning span data and issuing multiple normal writes,
• Implementing transparent or opaque fills,
• Interfacing to the Memory Controller
• Cacheing the memory data to reduce actual memory accesses,
• Prefetching data where ever possible,
• Calculating the read addresses of the spans in the memory,
• Aligning span data and issuing aligned span data,

1.1.11 Framebuffer Layout
The Layout field selects how the color data is to be laid out in memory. The options are:
• Linear. Here the rows are stored one after another in memory. This is typically used for small texture

maps (less than 32 x 32 x 32bpp which fit into one page) and is preferably not used for color buffers. In
this case the page miss per scanline will reduce the small triangle and line performance.

12 Although the term ’double buffering’ is used here everything is just as applicable to single or double buffered stereoscopic
displays.

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-9

• Patched64. In this layout the pixel data is arranged into 64x16 patches for 32 bpp, 128x16 for 16 bpp
and 256x16 for 8 bpp. This is the preferred layout for the color buffer to give equal access times for X
and Y paths. Note the page size is 1Kx32 bits. This also matches the patching of the Z, etc. data.

• Patched32_2. The texture data is arranged into 32x32 patches, but also patched to a finer level so
that one read always returns a 2x2 block of texel data (for 32 bit texels) or a 2x4 block for 16 bit texels.

• Patch2. The texture data is arranged into 2x2 patches. This is used for texture maps where the total
number of texels is less than 1K so it all fits into a page.

1.1.12 Block Writes
Block writes write consecutive pixels (spans) in the framebuffer simultaneously. This is useful when filling
large areas but does have some restrictions:
• No depth, stencil or GID testing can be done
• All the pixels must be written with the same value so no color interpolation, blending, dithering or logical

ops can be done
Block writes are not restricted to rectangular areas and can be used for any trapezoid. Hardware
writemasking is available during block writes.

The FBBlockColor and FBBlockColorBack registers need to be loaded with the value to write to each
pixel before block fills can be used.

Sending a Render command with the PrimitiveType field set to "trapezoid" and the FastFillEnable field set
enables block filling of the area. Note that during a block fill of a trapezoid any inappropriate state is ignored
so even if color interpolation, depth testing and logical ops, for example, are enabled they have no effect.

1.1.13 Pixels and Spans
During reading, spans are analysed into the number of 64-bit word reads involved, which can be up to 16
addresses and repeated for each possible buffer (one source buffer and four destination buffers). Each
buffer is cached and data may be prefetched if only a single read is involved. Prefetch (which may be
enabled/disabled in hardware) is enabled by the SubPixelCorrectionEnable bit in the Render commands
and triggered at the start of a scanline.

Span data can also be written to scratch pad memory instead of being forwarded. When both source and
destination reads are enabled the source read is stored in scratch memory.

FB Span operations fall into one of three categories described below. For a more general discussion of
upload, download and copy for fragments, bitmasks and spans see Volume II, section 1.1.8 - Bitmaps,
Spans and Images.

4.3.1.1 Constant color transparent stipple
 The pixel mask is used and no color mask is expected. The Write Combine Buffer (see 4.3.7) is used to
merge the new span mask with the current accumulated mask (if the masks overlap). When the span mask
is full or needs to be flushed out of the WCB the block write capability of the SGRAM memories or normal
writes for SDRAM are used (this is determined by the memory controller).

 Any alignment of the span mask to the memory pixel structure is done in this unit.

 The color to use is loaded by the FBBlockColor message or the FBBlockColor[0…3] registers
beforehand. The 128 bits can take different colors (useful for pattern filling). Transparent spans can be replicated or use t

1.1.13.1 Constant color opaque stipple
The foreground mask is the AND of the pixel mask and color mask. The background mask is the AND of
the pixel mask and the NOT color mask. Two WCBs are used to merge the new span masks with the
current accumulated mask - one for the foreground mask and one for the background mask.

 SGRAM block writes or normal SDRAM writes are used to flush the WCB when the span mask is full or
needs to be flushed (this is determined by the memory controller). The span is tagged to use the
foreground color or the background color and the memory controller will multiplex these into the single color
register in the SGRAM

 Any alignment of the masks to the framebuffer pixel structure is done in this unit.

 The foreground color to use will have been previously loaded by the FBBlockColor message or
FBBlockColor[0…3] where the 128 bits can take different colors (useful for pattern filling). The
background color to use will have been previously loaded by the FBBlockColorBack message or
FBBlockColorBack[0…3] where the 128 bits can take different colors.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-10 Proprietary and Confidential �(PEFW�

 Opaque spans can be replicated or use multi-buffer support to allow up to 2 writes, however only single
buffer writes are handled efficiently in Permedia4 - the address, offset, layout, etc. parameters must be
duplicated for the pair of buffers used in this mode.

1.1.13.2 Variable color
The pixel mask is used and no color mask is expected. This is converted into normal 128 bit writes and the
span data is aligned as necessary to the memory pixel structure. The WCB is used as for normal pixel
writes.

 Variable color spans can be replicated or use multi-buffer support to allow up to 4 writes.

The amount of data associated with a span mask (if the modes require any data at all) depends on the pixel
size:

32 bpp 2QH�ZRUG�RI�GDWD�LV�VHQW�IRU�HDFK�SDLU�RI�ELWV�ZKLFK�DUH�QRQ�]HUR���7KH��QXPEHU�RI�ZRUGV�

LV�IRXQG�E\�ILUVW�UHGXFLQJ�WKH�VSDQ�PDVN�WR����ELWV�E\�RULQJ�SDLUV�RI�ELWV�����������������HWF��

WRJHWKHU�DQG�GRLQJ�D�SRSXODWLRQ�FRXQW�RQ�WKH�UHGXFHG�PDVN��

16 bpp 2QH�ZRUG�RI�GDWD�LV�VHQW�IRU�HDFK�QLEEOH�RI�ELWV�ZKLFK�DUH�QRQ�]HUR���7KH��QXPEHU�RI�

ZRUGV�LV�IRXQG�E\�ILUVW�UHGXFLQJ�WKH�VSDQ�PDVN�WR���ELWV�E\�RULQJ�QLEEOHV�RI�ELWV���������������

��������������HWF��WRJHWKHU�DQG�GRLQJ�D�SRSXODWLRQ�FRXQW�RQ�WKH�UHGXFHG�PDVN��

8 bpp 2QH�ZRUG�RI�GDWD�LV�VHQW�IRU�HDFK�E\WH�RI�ELWV�ZKLFK�DUH�QRQ�]HUR���7KH��QXPEHU�RI�ZRUGV�

LV�IRXQG�E\�ILUVW�UHGXFLQJ�WKH�VSDQ�PDVN�WR���ELWV�E\�RULQJ�E\WHV�RI�ELWV�WRJHWKHU�DQG�GRLQJ�

D�SRSXODWLRQ�FRXQW�RQ�WKH�UHGXFHG�PDVN��

4.3.1.2 Clearing FB Memory
Framebuffer writes are handled generally as for Localbuffer writes with the addition of the Patch2 and
Patch32_2 formats intended primarily for textures. Hardware block fills are only available using
Framebuffer functionality and bitmasking is only supported in FB with SGRAM devices.

4.3.1.3 Hardware Writemasks.
These allow writemasking in the framebuffer without incurring a performance penalty. If hardware
writemasks are not available, Permedia4 must be programmed to read the memory, merge the value with
the new value using the writemask, and write it back.

To use hardware writemasking, the required writemask is written to the FBHardwareWriteMask register.
The FBSoftwareWriteMask register is set to all 1’s, and the number of framebuffer reads are disabled
using the Enable bits in the FBDestReadMode and FBSourceReadMode registers.

4.3.1.4 Software Writemasks.
To use software writemasking, the required writemask is written to the FBSoftwareWriteMask register and
framebuffer reads disabled as above (Hardware Writemasks). This is achieved by setting the
ReadDestination enable in the FBReadMode register.

4.4 Double Buffering

Double buffering is a technique used to achieve visually smooth animation by rendering a scene to an
offscreen buffer before quickly displaying it.

Which techniques are available depend on the board design. This section discusses how Permedia4 can
be used to support specific types of double buffering:
• BitBLT
• Page Flipping
• Mixed 2D/3D Buffering
Colorplane (pixel) double buffering is not supported by the Permedia4 RAMDAC.

Triple buffering is supported indirectly, using the vblank interrupt to indicate when the ScreenBase register
can be safely updated.

4.4.1.1 BitBlt Double Buffering
BLT double buffering in its simplest form requires a complete duplicate buffer of non-displayed memory to
be maintained. To swap buffers a BLT is performed onto the displayable area. The features are:
• takes significant time to swap buffers

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-11

• the offscreen buffer requires as much RAM as is displayed
• any number of windows can be independently double buffered
• pixel depth is limited only by the available RAM.

4.4.1.2 Page Flipping
To perform page flip double buffering the available memory must be partitioned into buffer 0 and buffer 1,
each of which contains enough memory to display a full screen of pixel information. The partitioning
requires calculating the offset into the framestore at which each buffer starts. This offset is used to program
the relevant LB and FB registers. For a given resolution and pixel depth there must be enough configured
memory on the display adapter for this to be possible.

There are two factors to consider for page flip double buffering:
• The video output hardware must be set up to display the pixels from the correct buffer.
• The relevant registers (FBDestReadBufferAddr, FBWriteBufferAddr etc.) must be programmed to

render into the correct buffer.

4.4.1.3 Mixed 2D/3D Buffering
Where a single 3D application is running on a 2D desktop it is possible to use page flipping instead of BLT
buffering and achieve a significant performance improvement . This also requires enabling the 2D desktop
to double write to front and back buffers simultaneously. Although two writes are still required, once the
appropriate enables are set up the 2D desktop algorithms can be unaware that they are in a dual write
mode. Usually driver software will enable that write mode dynamically when page flipping is enabled.

The constraint for page flipping is that only one 3D window may be visible. If multiple 3D windows are
visible then page flipping cannot be used (because the flip happens on a complete framebuffer basis, not
per window).

Multi buffer reads are enabled in the FBDestReadMode register using the Enable0 - Enable3 bits, and
qualified by the FBSourceReadEnable bit in the Render command. When the FBDestReadMode
ReadEnable bit is set then writes are done to the same buffers which were read. If this bit is clear then no
writes to any buffer are made.

Note Setting the Replicate bit in FBWriteMode selects the FBWriteEnable[0…3] bits and
corresponding FBWrite buffers instead of the FBDestReadMode enables. Do not set the
Replicate bit unless you wish to use the FBWrite buffer selections.

4.4.2 Video Output
Video output is controlled using bits 0-20 of the ScreenBase register in the video unit (offset 0x3000). This
is changed each vblank by writing to it directly via the bypass or by writing to the ScreenBase field of the
SuspendUntilFrameblank message through the graphics core.

For double buffering the SuspendUntilFrameblank command is not sent until back buffer rendering has
completed. This prevents further rendering until the next Vblank to avoid corrupting the front (displayed)
buffer.

For further information on Video display parameters see chapter 5, Video System.

4.4.3 Texture Map Management
Framebuffer functionality is specifically geared to texture mapping, hence the texture layouts (Patch2 and
Patch32_2). Physical, logical and virtual texture management is discussed in Texture Mapping, section 4.9
below.

4.4.4 Source and Destination Address Calculation
Addresses are calculated in the same general manner as for Localbuffer addresses, although two additional
formats (Patch2 and Patch32_2) are also supported. As with Localbuffer, bypass accesses are not
recommended when using patched (non-linear) data layouts.

The address calculation is controlled by the FBWriteMode register and the address is a function of X, Y,
FBWriteBufferAddr, FBWriteBufferOffset, FBWriteBufferWidth and PixelSize parameters. The
Address, Offset and Width parameters are specified independently for each of the four possible write
buffers.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-12 Proprietary and Confidential �(PEFW�

The address calculation is further modified by the FBWriteMode mode bits: Origin, StripePitch,
StripeHeight, and Layout. For register details see the Permedia4 Reference Guide.

4.4.5 Origin and Stripe Data
Coordinate origin and Stripe information is defined exactly as for the Localbuffer (section 4.2.11.1 above)

4.4.6 Write Combining
The data width of the memory is 128 bits. Access to the local buffer using FB functionality is also treated
as if it were 128 bits wide. This is much larger than the pixel width, so pixels which occupy the same
memory word are combined where possible to make best use of the memory bandwidth.

Write combining is done in the write combine buffer (WCB) and any new pixel data is written into this buffer
at the appropriate byte offset when the pixel’s memory address matches that of the data already in the
WCB. If the addresses do not match and the WCB holds valid data then the WCB is written to memory
before the new pixel is loaded in.

For single pixel writes (i.e. rendering via individual fragments) the write combed data will always fit exactly
into the WCB. Span data (which is 64 bits wide) may overflow the WCB which cause it to be updated,
written and then updated again.

The WCB is flushed to the framebuffer (if it contains any valid data) in the following circumstances:
• New data to combine is at a different memory address.
• FBWriteMode is updated.
• SuspendReads, Render, Sync, WaitForCompletion or SuspendUntilFrameBlank commands

received.
• The write mask or block color registers are loaded.

When the WCB buffer is written to memory the address is tested to determine the target memory region. If
the most significant bit is set (corresponds to bit 31 for a byte address) the target is the PCI bus. The data
is written to the PCI bus via the Memory Controller.

The write data FIFOs to both memory controllers are 8 deep

There is no coherency between the four write combine units so if the WCB are all combining to the same
memory address (i.e. the buffers overlap) then the final contents of memory are unpredictable.

4.5 Suspend and Swap on Frame Blank

In a high frame rate animation system the time waiting for frame blanking (before switching the displayed
frames over and proceeding with a new frame’s worth of drawing) can be a very high percentage of the time
each frame takes to process. During this idle time Permedia4 could be doing useful work such as clearing
down the depth buffer, but obviously it cannot do any writes to the framebuffer13.

The SuspendUntilFrameBlank message solves this problem by allowing all non framebuffer rendering to
proceed while waiting for a frame blank. If any writes to the framebuffer are attempted during this time the
graphics core simply stalls until the frame blank occurs. This happens without any host involvement so the
host software can ignore having to synchronise with frame blank before issuing rendering commands.

The ScreenBase field in the SuspendUntilFrameBlank message indicates where the new display frame is
to be found.

4.6 Downloading Data

4.7 Controlling the VTG or RAMDAC

The VTG and RAMDAC can be read and written via the PCI bypass, but sometimes it is useful to control
then synchronously with Permedia4 rendering activities. This can be done by using the VTGAddress and
VTGData commands. The address is loaded first followed by the data. The address and data are the
same as would be used if the VTG, Ramdac or any other device on the PCI bypass were accessed via the
bypass.

13If triple buffering is used rather than double buffering then the framebuffer can be cleared in preparation for the next frame
without having to wait for frame blanking.

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-13

4.8 Texture Mapping

Texturing is enabled in the Render register. Texture maps can be stored in physical memory or in
logical/virtual memory. If the texture map is stored in physical memory then it must be physically
contiguous and present before that texture is used.

Programming aspects of texture use are discussed in volume II, chapter 4 - Texture Mapping.

4.8.1 Texture Memory Layouts
The Layout field in the TextureMapWidth register selects how the texture data is to be laid out in memory
for each mip map level. The options are the same as for the Framebuffer functions:
• Linear. Here the rows are stored one after another in memory. This is typically used for small texture

maps (less than 32 x 32 x 32bpp which fit into one page) and are always accessed along a row. This
matches up with most 2D use of texture maps for font, icon and stipple pattern storage. Video data will
also fall into this category.

• Patch64. In this layout the pixel data is arranged into 64x16 patches for 32 bpp, 128x16 for 16 bpp and
256x16 for 8 bpp. This is the preferred layout for the color buffer (desktop) so will only be used when
the texture units need to operate on this data directly, for example to stretch blit a window.

• Patch32_2. The texture data is arranged into 32x32 patches, but also patched to a finer level so that
one read always returns a 2x2 block of texel data (for 32 bit texels), a 2x4 block for 16 bit texels or a
2x8 block for 8 bit texels.

• Patch2. The texture data is arranged into 2x2 patches. This is used for texture maps where the total
number of texels is less than 1K so it all fits into a page.

For textures even more than for color and alpha data, patched formats deliver better performance than
linear:
• Performance should be independent of the traversal direction, especially for ’large’ texture maps (i.e. >

32x32). Storing the texture map as linear data gives very good access times in the u direction but poor
access times in the v direction due to the page organisation of SDRAMS. Storing the texture maps in a
patch form (32x32 in our case for 32 bit texels) equalises the access times.

• The memory width is very much wider than the texel width so each memory read returns multiple
texels. If the texel data in a memory word are all for the same row then all the data is used when
traversing in u (along a row) but very little is used in the v direction (along a column). The 2x2 patch
organisation ensures that at least 2 texels can be used from each memory read for all traversal
directions.

Texture maps are preferably stored in memory in one of the 2x2 patched formats to give the best overall
performance for general 3D use, but this is not always possible. For example if the texture data originates
from an external source or is used to drive an external device (i.e. a monitor) the layout of the data may be
fixed and not in 2x2 format. Alternatively the traversal direction may be known to always be in the u
direction - examples of this are video scaling, fonts and general 2D use.

When the texture map is stored in memory in a non 2x2 layout it is formatted into the 2x2 layout expected
by the Filter Unit during read in.

4.8.1.1 Origin Orientation
Linear or Patch64 texture formats can choose between top left and bottom left origins, but the texture map
must start on the natural boundary for the texel size. For 8 bit texels this is on a byte boundary, for 16 bit
texels this is on a 2 byte boundary and for 32 bit texels this is on a 4 byte boundary.

4.8.1.2 Patch layout rules
The preferred layout for texture maps (1D or 2D) for use by 3D rendering is Patch32_2 or Patch2 as this
gives the minimum number of reads for an arbitrary orientation of the map, but for this to work the following
rules must be followed:
• Texture maps are stored with the top left corner as the origin, i.e. texels at increasing u and/or v

coordinates are at increasing memory addresses.
• The texture map must start on the natural patch boundary for the texel size. For 8 bit texels this is on a

4 byte boundary, for 16 bit texels this is on a 8 byte boundary and for 32 bit texels this is on a 16 byte
boundary.

• Patch32_2 layout only make sense when the width of the texture map is greater than the patch width
(128 bytes). Using Patch32_2 on texture maps which are less than 128 bytes wide wastes storage and
may increase the number of page breaks. If the width of a texture map is less than or equal to 128

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-14 Proprietary and Confidential �(PEFW�

bytes it will be changed from Patch32_2 to Patch2 automatically. This allows mip maps to be
Patch32_2 for the high resolution levels and Patch2 for the low resolution levels.

It is the software’s responsibility to set the layout to Patch32_2 or Patch2 as appropriate when the texture
map is downloaded. The hardware writes the texel data into the correct place. It does not, as a rule, switch
layouts automatically.

4.8.1.3 Texture Border Width
The minimum width and height of a texture map (in any layout) is 2 texels. If the width and/or height of a
texture map is 1 (such as the lowest resolution map in a set of mip maps) then the texels must be replicated
to expand the offending dimension(s) to 2 texels. If a 1x1 texture map has a border then the resulting 3x3
map is stored as a 4x4 map.

4.8.2 Address Calculation
If it is a 3D texture map the base address is set from TextureBaseAddr[0] register, the layout and texel
size are taken from TextureReadMode0 register and the width from TextureMapWidth0.

If the texture is not a 3D texture map then the layout, texel size and width parameters are taken from the
appropriate texture registers (these registers should be loaded in the same way as for per pixel mip
mapping). The TextureMapSize should be set to a value greater than or equal to the product of the width
and height for a slice. The width is divided by 2 (map level) so the correct mip map width is used.

Note The width does not have to be a power of 2 so the divide may have a remainder (which is
ignored) which would fail past some map level. This is not a problem as mip maps will always
be a power of two in size and non mip maps will always have a map level of 0.

The MapBaseRegister field of the TextureReadMode register defines which TextureBaseAddr(n) register
should be used to hold the address for map level 0 when mip mapping, or the texture map when not mip
mapping. Successive map levels are at increasing TextureBaseAddr registers up to and including the
MapMaxLevel. The actual one used depends on the map level, the map base level and map max level
associated with this texture as given by:

 offset into base registers = min (texture map level + map base level, map max level)
...so the allocation of the base registers between the two possible textures is up to software.

The maximum width is 4095, but the minimum width depends on the layout as Patch2 and Patch32_2 have
minimum requirements. If the mip mapping forces the width below these minimum requirements then the
width is forced to be the minimum allowed for the texel size:
• The minimum texel widths are 8, 4 and 2 for 8, 16 and 32 bits per texel respectively.
• The minimum width is one memory word (i.e. 16 bytes).
• If the width falls below 128, 64 or 32 texels for 8, 16 or 32 bits per texel respectively.

 Any textures with a Patch32_2 layout are automatically set to Patch2.

As with Framebuffer and Localbuffer operations, direct access to patched texel layouts should be avoided
due to the complexity of the calculations required.

4.8.3 Primary Cache
The primary cache holds the texel data in 8, 16 or 32 bits per texel format. This is converted into a standard
internal ABGR format for processing. The cache is divided up into 8 banks, giving two independent texture
maps (banks 0-3 and 4-7). This also allows two levels of a mip map or slices of a 3D texture.

When a single non-mip mapped texture is used the two caches can be joined together to render a larger
texture map or polygon while still maintaining scanline coherency.

There is a fixed relationship between a texel’s position in the texture map and which bank of cache is must
be stored in. The 8 banks are assigned depending on the type of texture mapping being done:

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-15

Filter Type Texture maps

Single bilinear The texture map is stored in both banks of the cache. This is
achieved by connecting the output of the second bank’s
register files to the corresponding register files in bank 0. This
is controlled by the CombineCaches bit in the
TextureFilterMode. This arrangement allows the full size of
the cache to be used on a single texture, so a larger texture
map can be handled before scanline coherency starts to break
down with consequential loss of performance

Dual Bilinear Texels from texture map 0 are stored in banks 0…3 and texels
from texture map 1 are stored in banks 4…7.

Mip mapping Even mip maps are stored in banks 0…3, odd mip maps are
stored in banks 4…7.

3D texture maps Texels with an even k coordinate (i.e. the third coordinate) are
in banks 0…3 and maps with an odd k coordinate are in banks
4…7.

An efficient texture cache is vital for texture performance, particularly when mip mapping14. Ideally the
entire texture map would fit into cache, but this is not currently possible except for the smallest texture maps
(32x32 at 16 bits per texel). As a result, the cacheing mechanism adopts various strategies to optimise
scanline coherence and consistency of performance for different traversal directions through the texture
map(s).

Span processing does not use the primary cache when the pixel mask (as part of the SpanStep register) is
modified by the texel data.

The cache is always enabled. User control is limited to invalidating the cache when cached data become
stale (e.g. when a new texture map is selected or when the current texture map's data is edited in memory).

The cache is divided into two parts: a data part and a directory part.

4.8.3.1 Cache Data Part
The data part of cache holds the texel data. Data formatting is controlled by the TextureFilterMode
register. Each cache line holds 128 bits of data. There are 64 cache lines in each bank for Permedia4.15
Each cache line holds a 2x2, 4x2 or 8x2 patch of texels for 32, 16 and 8 bits per texel respectively. In the
2x2 case the cache's performance is independent of the traversal direction through the texture map.
Otherwise the 'u' direction is more efficient than the 'v' direction.

The patch has a fixed relationship to the origin of the texture map: the origin of the patch is always an
integer multiple of the patch size from the origin of the texture map.

The following diagram shows the 2x2 patch arrangement within a texture map. The numbers in the
brackets show how the texel coordinates within the texture map vary and the T0…T3 are the corresponding
filter registers to which each texel is assigned. The grey areas show the texels held in a memory word (16
bytes) for each size of texel.

14 ...where the zoom ratio means limited re-use of texel data when moving from one pixel to the next
15These sizes are for illustration only and may be changed later.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-16 Proprietary and Confidential �(PEFW�

T0
(0,0)

T1
(1,0)

T0
(2,0)

T1
(3,0)

T0
(4,0)

T2
(0,1)

T3
(1,1)

T2
(2,1)

T3
(3,1)

T2
(4,1)

T0
(0,2)

T1
(1,2)

T0
(2,2)

T1
(3,2)

T0
(4,2)

T2
(0,3)

T3
(1,3)

T2
(2,3)

T3
(3,3)

T2
(4,3)

T0
(0,4)

T1
(1,4)

T0
(2,4)

T1
(3,4)

T0
(4,4)

T1
(5,0)

T0
(6,0)

T1
(7,0)

T0
(8,0)

T3
(5,1)

T2
(6,1)

T3
(7,1)

T2
(8,1)

T1
(5,2)

T0
(6,2)

T1
(7,2)

T0
(8,2)

T3
(5,3)

T2
(6,3)

T3
(7,3)

T2
(8,3)

T1
(5,4)

T0
(6,4)

T1
(7,4)

T0
(8,4)

T1
(9,0)

T3
(9,1)

T1
(9,2)

T3
(9,3)

T1
(9,4)

32 bit texels in memory word
16 bit texels in memory word
8 bit texels in memory word

4.8.3.2 Directory Part
The directory part of the primary cache is controlled by the TextureReadMode register and is searched to
find out if a texel is already in the primary cache and if so where.

A bank of the cache cannot hold texels from different texture maps (but texels from the different levels in a
mip map or from different slices in a 3D texture can be held in the same bank). This means that the cache
must be invalidated whenever a new texture map is selected.

Caution: The InvalidateCache command must complete before any further texture operations can be

performed or the pipeline may lock up16

The size of the cache is a compromise - the larger the better, but it follows the law of diminishing returns.
Each bank has 1K bytes of storage so for 16 bit textures the cache works best when fewer than 128 texels
are used for mip maps or 256 texels for a single texture map using both cache banks.

4.8.3.3 Combining Both Cache Banks
When a single texture map is being used, Permedia4 can be put into a mode where the register files from
bank 1 extend the corresponding register files in bank 0.

The TextureReadMode0.CombineCaches bit is used to enable the mode. When set, texels are loaded
into each bank alternately. The texture 0 indices are used and are checked in both banks for their
presence.

Caution: CombineCaches should not be used for texturing operations when clock speeds in excess of

100MHz are anticipated.17

4.9 Virtual Texture Management

The management of physical textures is complicated by the fact that an application can request more
textures than can fit into on-card memory so textures need to be dynamically swapped:
• The need to swap and usage are decoupled in time by the DMA buffers.
• The memory granularity is controlled by the texture map size so is continually changing.
• Memory gets fragmented.
• There is no clear replacement policy

Possible solutions include:
• Increase the amount of physical memory to hold texture maps.
• Allow textures to be executed out of host memory via the AGP or PCI bus.
• Treat texture addresses as logical or virtual addresses.

16 Use WaitforCompletion or another workaround - refer to Permedia4 Errata and Alerts PEREN0016.
17 Refer to Permedia4 Errata and Alerts, ALERT002

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-17

Permedia4 implements virtual texture management, which allows texture maps to be stored in non-
contiguous physical 4KB pages and allows demand paging of textures out of host or system memory with or
without assistance from the host CPU.

 Host textures can also be managed. Permedia4 supports this on AGP (via the HostTexture bit in the
TextureMapWidth registers) although it is bandwidth limited and raises latency issues. The main
difference is that no texture data is downloaded but is accessed ’in situ’ using the side band addressing
capability of the AGP texture execute mode.

4.9.1 Mapping an Address
When a texel causes a primary cache miss the following events take place in the virtual texture
management system:
• The texel has its logical byte address calculated from it’s integer coordinates, base address of the

texture, texture map width, etc.
• The logical page the logical address resides in is calculated and the Translation Look aside Buffer

(TLB) checked to see if the physical page assigned to the logical page is present in order to determine
a physical address to post to the memory controller.

• If the logical page is not found in the TLB then the system regenerates the physical addressing data
locally or via Host DMA.

4.9.2 Logical Page Mapping
The size of each page is always 4K bytes so the bottom 12 bits of a texel byte address give the byte within
a page while the next 16 bits give the page number (the remaining 4 most significant bits are ignored). This
gives a maximum virtual texture size of 65536 pages or 256MBytes. The working set can be any number of
pages in size. Each logical page has 8 bytes of overhead (in the Logical Page Table) and each physical
page has 8 bytes of overhead (in the Physical Page Allocation Table). Some typical sizes for these tables
are:

Managed Memory

(pages / MBytes)

Table Size

�������0%\WH� �.%\WHV�

�������0%\WH� �.%\WHV�

��������0%\WH� �.%\WHV�

��������0%\WH� �.%\WHV�

���������0%\WH� ��.%\WHV�

���������0%\WH� ��.%\WHV�

The Logical Page Table is typically much bigger than the Physical Page Allocation Table. The Logical Page
Table must be physically contiguous and in allocated in local buffer memory. The Physical Page Allocatoin
Table must be physically contiguous and is allocated in local buffer memory.

4.9.3 Translation Look-aside Buffer (TLB)
The Translation Look-aside buffer (TLB) caches the recent logical to physical page mappings. It is checked
first to see if the mapping for a page is present - this is much faster than having to query the Logical Page
Table in memory. The TLB runs whenever virtual texture is enabled. It can be invalidated by using the
InvalidateCache command with the TLB bit set. The TLB should be invalidated whenever the host
changes the Logical Page Table directly through the bypass. Changes to the Logical Page Table via the
UpdateLogicalTextureInfo command will automatically invalidate those logical pages which are updated, if
present in the TLB.

4.9.4 Logical Page Table
The Logical Page Table has one entry per logical page and each entry has the following format:

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-18 Proprietary and Confidential �(PEFW�

Bit
No.

Name[number
of bits if not 1]

Description

0…15 PhysicalPage[1
6]

These bits hold the physical page number relative to
the start of the working set where this logical page is
held. If the page is not resident (next field) then
these bits are ignored (but will frequently be set to
zero). This field is normally maintained by P4,
except when the page is marked as a HostTexture.

16 Resident This bit, when set, marks this logical page as
resident in the working set. This field is normally
maintained by P4, except when the page is marked
as a HostTexture.

17 HostTexture This bit, when set, marks this logical page as
resident in the host memory and it should be
accessed using AGP texture execute mode rather
than downloading it. The Length field should also be
set to zero.

18…31 reserved This field is not used but is set to zero whenever the
Resident bit is updated.

32…40 Length[9] This field holds the number of 128 bit words to
transfer when a page fault occurs. This allows a
page to hold a texture map smaller than 4K without
spending the extra download time on the unused
words. There is no way to download to unused
portion without overwriting the used part. When the
physical page is in host memory the length field must
be set to zero.
This field is maintained by the host.

41…42 MemoryPool[2] This field holds the memory pool this logical page
should be allocated out of.
This field is maintained by the host.

43 VirtualHostPage This bit, when set, indicates the HostPage (next field)
is a virtual page in host memory so cannot be
accessed directly. Setting this bit will generate an
interrupt and involve the host in providing this page
of texture data. When this bit is 0 the HostPage is
the physical page and will be read directly with no
host intervention.
This field is maintained by the host.

44…63 HostPage[20] This field holds the page in host memory where the
texture data is held. This is a virtual host page or a
physical host page as indicated by the
VirtualHostPage bit (previous field).
This field is maintained by the host.

The first word in each entry is basically read and written during the memory management activities unless
the page is a host texture in which case the host is responsible for the first word as well. The second word
is written by the host (either directly via the bypass or via the core using messages) and just read by
Permedia4.

The base address of the table is held in the LogicalTexturePageTableAddr register and is aligned to a 64
bit boundary. The number of entries in the table is held in the LogicalTexturePageTableLength register
and each logical page number is tested against this limit. If the logical page number is out of range then
the address is always mapped into page 0 of the working set18 and will never cause a texture download.
The LogicalTexturePageTableLength is initialised to zero during reset which effectively disabled the
logical and virtual texture management.

18As a debug aid page 0 of the working set can be missed out of the Physical Page Allocation Table and initialised to some
distinctive texture map so any out of range texture mappings cause a distinctive visual effect.

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-19

The table can be updated by the host directly via the bypass once the chip has been synced to make sure
there are no conflicting accesses. The PhysicalPageAllocationTable must also be updated to remove the
reference (if any) to the logical page being updated. The TLB should also be invalidated.

The table can also be updated via the normal command stream using the SetLogicalTexturePage
command to set the first page to update. The data for bits 32…63 is supplied with the
UpdateLogicalTextureInfo command. This updates the Logical Page Table at the previously set page and
does any necessary housekeeping. The logical page to update is auto-incremented so several consecutive
table entries are updated. Updates beyond the number of entries in the table (as set by
LogicalTexturePageTableLength) are discarded and leave the memory untouched.

The logical table is updated by:
• Memory Allocator to mark a logical page as non-resident when its allocated physical page is reclaimed

and assigned to another logical address.
• The Download Controller to update the resident bit and physical page field once the download is

complete.

4.9.5 Memory Allocation
When there is a new page of non host texture data to load into the working set a physical page needs to be
allocated to it from the specified pool of memory. The least recently used page in the specified pool is
used.

Keeping track of the least recently used page is done by a queue. Whenever a page is first accessed
(easily identified by a TLB miss on the page) it is moved to the head of the queue. The page at the tail of
the queue is therefore the least recently used and can be allocated to the new texture page. This physical
page may already be assigned to a logical page so that logical page is marked as non-resident in the
Logical Page Table and removed from the TLB.

The queue used to track the physical pages is held in the Physical Page Allocation Table. This table has
one entry per physical page and each entry has the following format:

Bit No. Name [number of bits
if not 1]

Description

�«��� /RJLFDO3DJH>��@� 7KHVH�ELWV�KROG�WKH�ORJLFDO�SDJH�QXPEHU�WKLV�SK\VLFDO�SDJH�KDV�

EHHQ�DVVLJQHG�WR���,I�QR�DVVLJQPHQW�KDV�EHHQ�PDGH��RU�LW�KDV�

EHHQ�UHPRYHG��WKHQ�WKH�YDOLG�ELW��QH[W�ILHOG��ZLOO�EH�]HUR�DQG��

WKHVH�ELWV�DUH�LJQRUHG��EXW�ZLOO�IUHTXHQWO\�EH�VHW�WR�]HUR����

��� 9DOLG� 7KLV�ELW��ZKHQ�VHW��PDUNV�WKLV�ORJLFDO�SDJH�DV�UHVLGHQW�LQ�WKH�

ZRUNLQJ�VHW���7KLV�ILHOG�LV�QRUPDOO\�PDLQWDLQHG�E\�3���

��«��� UHVHUYHG� 7KLV�ILHOG�LV�QRW�XVHG�EXW�LV�VHW�WR�]HUR�ZKHQHYHU�WKH�5HVLGHQW�

ELW�LV�XSGDWHG��

��«��� 1H[W3DJH>��@� 7KLV�ILHOG�KROGV�WKH�SDJH�QXPEHU�RI�WKH�QH[W�SDJH�LQ�WKH�SRRO���

L�H��WKH�QH[W�UHFHQWO\�XVHG�SDJH��

��«��� 3UHY3DJH>��@� 7KLV�ILHOG�KROGV�WKH�SDJH�QXPEHU�RI�WKH�SUHYLRXV�SDJH�LQ�WKH�

SRRO���L�H��WKH�SUHYLRXV�UHFHQWO\�XVHG�SDJH��

The Physical Page Allocation Table is not normally accessed by the host. The two exceptions are during
power-on initialisation and if pages are to be locked down.

The NextPage and PrevPage fields are used to form a double linked list of the pages assigned to a memory
pool. In this application a deletion can occur from any queue entry but insertions only occur at the head.
The head entry is the most recently used physical page.

A traditional linked list suffers from a linear search time, but by combining it with an array (i.e. table) a
constant search time to find a given physical page is guaranteed - you just use the physical page number to
index into the table. This is important as a frequent operation is to make a specific physical page the most
recent. This involves searching for this page and updating the head (and maybe the tail) pointer to move
this page to the head of the queue.

Each memory pool has a head and tail page. These are held in the HeadPhysicalPageAllocation[0…3]
and TailPhysicalPageAllocation[0…3] registers respectively and the index relates to each memory pool.
These registers are initialised by software at the start of day, but there after are read and written by the
hardware.

The PrevPage field for the head page is ignored and holds links which should be ignored. Similarly for the
NextPage field for the tail page.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-20 Proprietary and Confidential �(PEFW�

The maximum size the Physical Page Allocation Table needs to be19 is the amount of buffer memory
(LB+FB) in Mbyes, divided by 4096. This gives one entry for each 4K page on the card. Many of these
pages are not available for virtual texture storage because they hold:
• color buffers.
• Z, stencil, etc. buffer.
• overlay buffers.
• video overlay buffers.
• non logical textures, icons, fonts, bitmaps, etc.
• the Logical Page Table.
• the Physical Page Allocation Table.
• run length encoded window ID information.
• logical textures which have been locked down.
These pages are not included in any of the four linked lists so are ignored by the memory allocation
hardware.

4.9.6 Programming Notes for Non-Host Textures
This section looks at some general programming information on how the virtual texture management
hardware is used.

4.9.6.1 Start of Day Initialisation
Before any logical or virtual texture management can be done there are a number of areas which need to
be initialised (in addition to the usual mode, etc. register initialisation):
• Space for the Logical Texture Page Table must be reserved in the local buffer and the table initialised

to zero. The LogicalTexturePageAddr and LogicalTexturePageTableLength must be set up.
• Space for the working set must be reserved in the local buffer and/or framebuffer. This need not be

physically consecutive pages. The BasePageOfWorkingSet register is set up.

If virtual texture management is to be used then the following additional initialisation is required:
• Space for the Physical Page Allocation Table is reserved in the local buffer and

PhysicalPageAllocationTableAddr register is set up to point to it.
• Bits 0…31 of each entry in the Physical Page Allocation Table is set to zero - to clear the valid bit.
• Each page entry in the Physical Page Allocation Table is associated to one of the four pools based on

which bank of memory it resides in. All the pages in a pool are linked together as a double linked list
by setting the NextPage and PrevPage fields. The order is unimportant, but sequential is simplest.
The PrevPage field for the first entry in the double linked list and the NextPage field for the last entry
can be set to any value as they are not used. Finally the HeadPhysicalPageAllocation and
TailPhysicalPageAllocation registers for this memory pool are updated with first and last page
numbers.

Each memory pool (to a maximum of 4) is set up like this. (Unused memory pools must not be referenced
in the Logical Texture Page Table). The texture management hardware is ready to be used once logical
textures have been created. The texture management can be done on a global basis so all contexts/APIs
share the same mechanisms, or can be done on a context by context basis.

4.9.6.2 Creating and Loading Texture Maps
The sequence of events when the application asks for a texture to be loaded are as follows:
• Host memory to hold the texture map is allocated and locked down. This memory is private to the

driver or ICD and not accessible to the application. The pages do not need to be contiguous.
• The logical pages to use for the texture map are allocated from the Logical Texture Page Table. These

may be new pages or currently assigned. If they are currently assigned then the texture management
hardware will do any necessary housekeeping to prevent aliasing of physical pages to the same logical
page (thereby degrading the performance although still functioning correctly).

• The host physical page (or host virtual page when host virtual addressing is used) of each page
reserved for the texture is found and the HostPage field for each corresponding entry in the Logical
Texture Page Table is updated with it.

• The memory pool this texture is to be stored in is determined20 and each logical entry has its
MemoryPool field set appropriately.

19There is no reason why the Physical Page Allocation Table could not be smaller and just cover the contiguous region set aside
for dynamic texture management. Having it cover all the on card memory helps to illustrate some points.

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-21

• The Length field for each logical entry will normally be set to 0x100 (i.e. 4096 bytes), however as an
optimisation if only part of the 4K page is used (must be the lower part) then the number of 64 bit words
used can be used instead.

• The application’s texture is copied into the previously allocated host memory and during the copy the
texture map is patched and aligned as required by the setting the texture map will be invoked with21.

The preferred way to update the Logical Texture Page Table is to use the SetLogicalTexturePage and
UpdateLogicalPageInfo commands. The SetLogicalTexturePage command takes the logical page to
update in the least significant bits. The UpdateLogicalPageInfo command sets bits 0…31 to zero and
updates bits 32…63 with the given data. The entry to update was set by SetLogicalTexturePage
command and this is auto incremented after the update. All the necessary housekeeping is done.

Alternatively the Logical Texture Page Table can be edited by software by reading and/or writing it directly
to the table in memory using bypass memory accesses. In this case it is the software's responsibility to do
the necessary housekeeping to remove any references to the updated logical pages in the Physical Page
Allocation Table.

After this set up has been done the texture map can be bound and used. Note that the texture map (or
pages of it) are not loaded until it is actually used.

4.9.6.3 PreLoading Texture Maps
As mentioned in the previous section the texture map is only downloaded when it is used, but it is
sometimes useful to ensure it is downloaded when it is created. This can be done by using the Load mode
to load each logical page in the texture map. Alternatively when a texture map is bound (to a context) you
may want to ensure it is resident at that time, rather than wait for a page fault. If the page is already
resident then there is no need to load it (as the Load mode would do) so the Touch mode can be used
instead. These can be done using the command TouchLogicalPages. This command has the following
data fields:

Bit No. Name Description

�«��� 3DJH� 7KLV�ILHOG�VHW�WKH�ILUVW�/RJLFDO�3DJH�WR�WRXFK��

��«��� &RXQW� 7KLV�ILHOG�KROGV�WKH�QXPEHU�RI�SDJHV�WR�WRXFK��

��«��� 0RGH� 7KLV�ILHOG�LV�VHW�WR���WR�WRXFK�D�SDJH�V��RU�WR���WR�ORDG�D�SDJH�V���

As each page is touched the corresponding texture data is downloaded.

4.9.6.4 Editing Texture Maps
To edit the texture map (for example as part of a TexSubImage operation in OpenGL) the host's copy is
edited. The texture management hardware is notified that the texture pages (if resident) are stale by using
TouchLogicalPages to mark these pages as non resident. This command has the following data fields:

�

%LW�1R�� 1DPH� 'HVFULSWLRQ�

�«��� 3DJH� 7KLV�ILHOG�VHW�WKH�ILUVW�/RJLFDO�3DJH�WR�PDUN�DV�VWDOH��

��«��� &RXQW� 7KLV�ILHOG�KROGV�WKH�QXPEHU�RI�SDJHV�WR�PDUN�DV�VWDOH��

��«��� 0RGH� 7KLV�ILHOG�LV�VHW�WR���WR�PDUN�WKH�SDJHV�DV�VWDOH��L�H��QRQ�UHVLGHQW���

The primary texture cache is invalidated (using the InvalidateCache command) to ensure it doesn't hold
any stale texel data for the texture map just edited.

4.9.6.5 Deleting Texture Maps
Texture maps do not need to be deleted. Simply reusing the logical address achieves the same thing. If
you really want to delete the pages then the TouchLogicalPages command can be used to mark them non
resident22.

20This may be difficult to determine as the usage of the texture maps is not available. Ideally texture maps to be used
simultaneously should be in different pools, unless they can both fit into the same 4K page.
21It is impossible to do any patching or aligning while the page of texture is downloading as the download mechanism has no
knowledge of the dimensions of the texture map, its base address, layout or texel size.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-22 Proprietary and Confidential �(PEFW�

4.9.6.6 Locking Down Texture Maps
The best way to have locked down texture maps (i.e. they don’t get swapped out) is to avoid using
logical/virtual management and have them as physical textures. If a texture is to be locked down after is
has been created as a logical texture then the software must edit the Physical Page Allocation Table (and
possibly the HeadPhysicalPageAllocation and/or TailPhysicalPageAllocation registers for the affected
pools). The system must be idle before these edits can take place to avoid texture downloads in mid-edit
with unpredictable results.

4.9.6.7 Virtual Host Textures
Virtual host textures are textures which live in virtual host memory so do not need to be locked down into
physical memory. As a result they are not guaranteed to be present when a corresponding page fault
occurs, and in any case the Logical Texture Page Table only holds the virtual page address and not the
physical page address.

The Logical Texture Page Table will have the VirtualHostPage bit set for these logical pages. Setting or
clearing the bit does not otherwise change the setup from Permedia4’s point of view.

On a page fault the DMA controller cannot go and fetch the page information directly but raises an interrupt.

On receiving this interrupt the TextureAddr PCI register is read. This holds the 20 bit virtual address page
for the faulting texture page. When the data is available in locked memory the physical address where the
data is located is written in to the TextureAddr PCI register. This wakes up the texture download DMA
controller which performs the download and finishes any necessary house keeping.

4.9.6.8 Using Logical Mapping without Virtual Management
Logical texture mapping can be used without virtual management. This allows textures to be mapped over
non-contiguous physical memory without automatic loading. Set up this way, textures are managed
similarly to the GLINT MX, but memory management is simpler because physical memory allocation is now
done on pages rather than variable-size texture maps.

To do this all current logical textures must be resident so a page fault will never occur. When a texture is
created the software needs to do two things:
• Allocate the physical memory and update the Logical Texture Page Table with the logical to physical

mappings.
The physical page for each corresponding logical page is stored in bits 0…15 and the resident bit (bit
16) is set. The second word in each entry is not used (it would only be accessed on a page fault). The
Logical Texture Page Table can be modified directly via the bypass (after syncing) or can be updated
via the command stream. The DownloadAddress register and DownloadData commands can be
used to update an arbitrary region of memory. This allows them to be used to update the logical
entries in the Logical Texture Page Table23.

• The texture map must be downloaded into the physical pages. This can be done via the bypass
mechanisms or through the command stream. In either case it is the software's responsibility to do any
patching and alignment consistent with how the texture map will be used.

Note The texture download mechanism which can do the patching doesn’t have any method of
remapping the addresses so cannot work with non-contiguous physical memory. The
DownloadAddress register and DownloadData commands can be used to download each page
of texture (pre-patched, if necessary) into its corresponding physical page.

4.9.7 Programming Notes for Host Textures
Texture maps stored in host memory can be managed by the virtual management hardware. This allows a
texture map to be split over non-contiguous pages of host memory (without relying on the AGP GART table
to do the logical to physical mapping) and texture maps to be paged in and out of this memory.

The host pages are not part of the physical memory pool managed by the hardware so all host pages are
allocated (or reallocated) by host software.

22 This does not mean that these pages are made the least recently used pages so they get reused sooner - they will percolate to
this status subsequently just through inactivity.
23The UpdateLogicalPageInfo command cannot be used as it zeros the physical page field and updates the fields concerned
with page faults. Also this command does housekeeping work on the Physical Page Allocation Table, which presumably will not
have been set up if the virtual texture management is not being used.

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-23

4.9.7.1 Start of Day Initialisation for Host Textures
Assuming the range of logical pages reserved for host texture management is already included in the length
of the Logical Page Table then no further initialisation is needed other than to set up the
BasePageOfWorkingSetHost register with the address of the region to manage. This is a 256MByte
region and can be positioned anywhere in the 4G host address range.

No changes to the Physical Page Allocation Table are needed.

4.9.7.2 Creating Logical Texture Maps for Host Textures
The sequence of events when the application asks for a texture to be loaded are as follows:

• Host memory to hold the texture map is allocated and locked down24. This memory is private to the
driver or ICD and not accessible to the application. The pages do not need to be contiguous.

• The logical pages to use for the texture map are allocated from the Logical Texture Page Table. These
may be new pages or currently assigned. If they are currently assigned then the TLB should be
invalidated to prevent it from holding stale addresses.

• Each logical page has its physical page, resident and host texture fields in the Logical Page Table
updated with the corresponding host physical page where the texture is located. The length field must
be set to zero (to disable a download from occurring). The pool field and the HostPage field are not
used (but are available to software to hold information about this page).

• The application’s texture is copied into the previously allocated host memory. During the copy the
texture map is patched and aligned as required by the setting the texture map will be invoked with25.

The preferred way to update the Logical Texture Page Table is to use the DownloadAddress and
DownloadData commands. The DownloadAddress command takes the byte address in memory of the
Logical Page Table Entry to update. The DownloadData command writes its data to memory and then
auto increments the address. Two words are written per logical page entry. After the Logical Page Table
has been updated the TLB must be invalidated to prevent it holding stale data (use the InvalidateCache
command with bit 2 set) and WaitForCompletion used to ensure the table in memory has been updated
before any rendering can start26.

Alternatively the Logical Texture Page Table can be edited by software by reading and/or writing it directly
to the table in memory by using bypass memory accesses methods. In this case it is the software’s
responsibility to Sync with the chip first to ensure no outstanding rendering is going to use a logical page
about to be updated. The TLB still needs to be invalidated after the bypass updates have been done. After
this set up has been done the texture map can be bound and used.

4.9.7.3 PreLoading Texture Maps for Host Textures
This is not meaningfull unless they are virtually managed, in which case they can be touched like non-host
textures. This is because the texels are read on demand and not downloaded as pages.

4.9.7.4 Editing Texture Maps for Host Textures
The procedure is identical to that for non-host textures (above).

4.9.7.5 Deleting Texture Maps for Host Textures
It is unnecessary to delete texture maps. Reusing the logical page has the same effect.

4.9.7.6 Virtual Host Textures
Virtual host textures are textures which live in virtual host memory so do not need to be locked down into
physical memory. As a result they are not guaranteed to be present when a corresponding page fault
occurs, and in any case the Logical Texture Page Table only holds the virtual page address and not the
physical page address.

The Logical Texture Page Table will have the VirtualHostPage bit set, the resident bit clear, the host texture
bit set and length field zero for these logical pages.

24Virtual host memory could be used, however the driver will need to respond to every page fault and make the textures available
in locked physical memory before starting the DMA off to download them.
25It is impossible to do any patching or aligning while the page of texture is downloading as the download mechanism has no
knowledge of the dimensions of the texture map, its base address, layout or texel size.
26The writes to the Logical Page Table are done as Framebuffer Writes so may still be queued up on the subsequent TLB miss,
hence stale page data will be read from the Logical Page Table. The WaitForCompletion command ensures this cannot happen.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-24 Proprietary and Confidential �(PEFW�

The DMA controller raises an interrupt (even though no download is needed the DMA controller is involved
so the same software interface can be used).

On receiving this interrupt the TextureAddr, LogicalPage and TextureOperation PCI registers are read to
identify the faulting texture page. When the data is available in locked memory the Logical Page Table is
updated via the bypass and the TextureAddr PCI register is written (the data is not used). The write to the
TextureAddr register will wake up the texture download DMA controller but because the length field is zero
no download is done or physical page (from the Physical Page Allocation Table) allocated. The TLB is
automatically invalidated.

In servicing the interrupt a physical page (or pages if the interrupt is used to allocate a whole texture rather
than just a page) must be allocated by software. If these physical pages are already assigned then the
corresponding logical pages must be marked as non resident in the Logical Texture Page Table. If these
newly non resident logical pages are subsequently accessed (maybe by a queued texture operation) they
themselves will cause a page fault and be re assigned. Hence no knowledge of what textures are waiting in
the DMA buffer to be used is necessary. The physical pages are allocated from the host working set whose
base page is given by BaseOfWorkingSetHost register.

4.10 3D and Other Textures

4.10.1 3D Textures
A 3D texture map is one where the texels are indexed by a triplet of coordinates: (u, v, w) or (i, j, k)
depending on the domain and is typically used for volumetric rendering.

The texture map is stored as a series of 2D slices. Each slice is stored in an identical fashion to all other
2D texture maps. The first slice (at k = 0) is held at the address given by TextureBaseAddr0 and the
remaining slices are held at integral multiples of TextrueMapSize (measured in texels) from
TextureBaseAddr0.

3D texture mapping is in this unit is enabled by setting the Texture3D bit in TextureReadMode0 (the same
bit in TextureReadMode1 is always ignored). The layout, texel size, texture type and width should be set
up the same for texture 0 and texture 1.

When 3D texture is enabled then any bits to control dual textures or mip mapping are ignored. The
CombinedCache mode bit should not be set when 3D textures are being used.

4.10.2 Bitmaps
Bitmap data can be stored in memory and accessed via the texture mapping hardware. The resulting ’texel’
data is treated as a bitmap and used to modify the pixel or color mask used in a span operation.

The bitmap data can be held at 8, 16, 32 or 64 bit texels and is zero extended (when necessary) to 64 bits
before being optionally byte swapped, optionally mirrored, optionally inverted and ANDed with the pixel
mask or the color mask. Bitmaps use the secondary texture cache, not the primary texture cache.

The bitmap data can only be held in Linear or Patch64 layouts - Patch32_2 or Patch2 formats are not
supported, however no interlocks prevent their use - the results are just not interesting or useful. The
bitmap data can be stored as logical or physical textures.

The bitmap data can be held as packed 8, 16, 32 or 64 bit data, usually with one scanline of the glyph held
per texel. Glyphs wider than 64 bits will take multiple texels to cover the width. Packing multiple scanlines
together reduces the waste of memory (in MX the texel size was limited to 32 bits for spans), and makes the
cacheing more efficient.

Before the texel can be used it is processed as follows:
• The bitmap texel is zero extended up to 64 bits.
• The texel is byte swapped according to TextureReadMode0.ByteSwap field. If the 64 bit word has

bytes labelled: ABCDEFGH then the three bits swap the bytes as follows:

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-25

%LW���

�ORQJ�VZDS��

%LW���

�VKRUW�VZDS��

%LW���

��E\WH�VZDS��

6ZDSSHG�

$%&'()*+�

�� �� �� $%&'()*+�

�� �� �� %$'&)(+*�

�� �� �� &'$%*+()�

�� �� �� $%&'()*+�

�� �� �� ()*+$%&'�

�� �� ��)(+*%$'&�

�� �� �� *+()&'$%�

�� �� �� +*)('&%$�

• Next the texel is optionally mirrored. This is controlled by the TextureReadMode0 Mirror bit. The
mirror swaps bits:

 (0,. 63), (1, 62), (2, 61),…(31, 32).
• The texel is next optionally inverted under control of the TextureReadMode0 Invert bit.
• When TextureReadMode0 field OpaqueSpan is zero the texel is ANDed with the pixel mask to remove

pixels from the mask. When TextureReadMode0.OpaqueSpan is 1 the texel is ANDed with the color
mask to control foreground/background color selection (which must be preloaded into the
FBBlockColor and FBBlockColorBack registers). This is more fully described in section 4.3.3 and
4.3.4 above.

Windows normally supplies its bitmasks as a byte stream with successive bytes controlling 8 pixel groups at
increasing x (i.e. towards the right edge). Bit 7 within a byte controls the leftmost pixel (for that group) and
bit 0 the right most pixel. To match up the pixel mask order (bit 0 controls the left most pixel, bit 63 the right
most pixel) the three byte swap bits are all set and the mirror bit set.

4.10.3 Indexed Textures
Indexed textures are a special case because they are stored as 8 bit texels and expanded to 32 bit texels
when loaded. This makes the addressing and cache management slightly more complicated as addressing
uses 8 bit texels while cache management uses 32 bit texels.

The secondary cache holds the texture data in its 8 bit format which reduces the number of memory reads
when the access path is mainly in u across the texture map.

4.10.4 YUV 422 Textures
YUV textures are a special case because two texels are stored in a 32 bit word (so in this sense they are 16
bit texels), however the U and V components are shared so the 32 bit word represents two 24 bits texels
(the spare 'alpha' byte is set to 255). If the input bytes in the 32 bit word are labelled:

 Y1 V0 Y0 U0 (U0 in the ls byte)
then the two output words are formed (in the internal format):

 255 V0 U0 Y0 and 255 V0 U0 Y1 (Y in the ls byte)
This arrangement of the YUV pixels in memory is called YVYU, but an alternative memory format (called
VYUY) is also supported. In this case the bytes are labelled:

 V0 Y1 U0 Y0 (Y0 in the ls byte)

4.10.5 Borders
Borders (in the OpenGL sense) are used only when the filter mode is bilinear and the wrapping mode is
clamp. In this case when one of the filter points goes outside the texture map the border texel is read or (if
it is not present) the border color is used. The border, if present, still needs to be skipped over and this will
have already been done by incrementing the i, j indices before they arrive.

The width of a texture map is (2n + 2b) where b is 0 (no border) or 1 (border). Unfortunately the texture
map width cannot simply be set to this value because the lower resolution mip map levels 'divide out the
border' as the width is divided by 2 for each successive level. The TextureMapWidth0 and
TextureMapWidth1 registers hold the width of the texture map without the border (in bits 0…11). If a
border is present the border bit (bit 12) in TextureMapWidth0 or TextureMapWidth1 is also set.

If a 1x1 texture map has a border then the 3x3 map is stored as a 4x4 map as shown:

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-26 Proprietary and Confidential �(PEFW�

b0 b1 b2 b0 b1 b2 b2
b3 t0 b4 b0 b1 b2 b2
b5 b6 b7 b3 t0 b2 b4

 b5 b6 b7 b7

Texels which fall into the border when no border is present are flagged - these texels are not checked in the
cache and no texels are read from memory. The T0BorderColor… T7BorderColor flags used for this
purpose select the BorderColor0 (T0…T3) or BorderColor1 (T4…T7) registers instead of the primary
cache to provide the texture data. The BorderColor0 and BorderColor1 registers would normally be set to
the same value for OpenGL when mip mapping.

4.11 Texture Implementation

Having looked at the memory management aspects of Texture Cacheing we can now examine the real-time
sequence of events.

4.11.1 Overview

Texture functionality is organised into three groups: The Primary Cache Manager, Address Generator and
Dispatcher form the core and work in a similar way to the other read units. The logical address translation
is handled by the Address Mapper and TLB. Dynamic texture loading is handled by the Memory Allocater
and the Download Controller.

Interfaces between all the units are FIFOs most of which are simply registers with full/empty flags for
handshaking. The two shared resources which are managed in this way are the TLB and Memory Allocater.
The TLB is mainly queried by the Address Mapper but the Memory Allocater needs to invalidate pages
when a physical page is reassigned. The Memory Allocater allocates pages when requested by the
Download Controller, but also needs to mark pages as 'most recently used' when requested by the Address
Mapper.

There are two read/write ports to the Memory Controller used to access the Logical Page Table and the
Physical Page Allocation Table - these are 64 bit ports and are not FIFO buffered. (It is unnecessary to
queue reads or writes on these ports as the texture process stalls until these are satisfied.)

The texture data read port to the Memory Controller has a deep address FIFO and return data FIFO to
absorb as much latency as possible.

The write port to the Memory Controller is used by the Download Controller to write texture data into
memory during a download.

All the controlling registers (TextureReadMode, TextureMapWidth, TextureBaseAddr, etc.) are held in
the Primary Cache Manager so the responsibility for loading them from the message stream, context
dumping and readback is concentrated in one place. As a result, before any of them can be updated all
outstanding work which may depend on them must be allowed to complete.

The sequence of events when a texture read command arrives under various conditions is as follows:

 a) All the texel data is in the primary cache

The texels: (i0, j0, map), (i1, j0, map), (i0, j1, map), (i1, j1, map) for texture 0 and for texture 1 are
checked in parallel in the Primary Cache Manager to see if they are in the primary cache.

b) One texel from texture 0 and one texel from texture 1 miss the primary cache

The cache allocation for both banks is checked simultaneously and the missing texels passed to the
Address Generator via the AG0 and AG1 FIFOs for the corresponding banks. The step message, with
the address of each texel filled in, is written to the M FIFO and the texel read count field on this step set
to two. This part of the processing all happens in the same cycle so the fragment throughput is
maintained.

The Address Generator processes the texel reads one at a time. It calculates the address for the texel
in memory using the i, j and map values together with the appropriate TexelReadMode and
TextureMapWidth values. The address is checked to see if it is in the secondary cache, and if it is
then instructions to load the primary cache from the secondary cache are sent down the T FIFO. A
more common case (for Patch32_2 or Patch2 layout) is that the secondary cache doesn't hold the texel
so the Address Mapper is given the address and its type (logical or physical) via the AM FIFO.

For a physical texture the Address Mapper passes the address through to the Memory Controller via
the Tx Addr FIFO. For a logical address the TLB unit is asked if this logical page is present and what
the corresponding physical page is. If the TLB is hit the physical memory address is derived from the
physical page and low order bits of the logical address and passed to the Memory Controller. If the

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-27

TLB misses then the Address Mapper reads the Logical Texture Page Table entry for this logical page
and, in this case, the page is resident so the corresponding physical page is now available. The
physical memory address is derived from the physical page and low order bits of the logical address
and passed to the Memory Controller. The TLB is updated so this logical page is the most recent one
and its corresponding physical page recorded.

When the outstanding texel data (as shown by the texel read count field) has been loaded into the
primary Texture Filter cache data is passed on as soon as the following unit can accept it. If, however
the outstanding texel data has not been loaded then the step message is stalled until it has.

c) Two texels (from different texture maps) are not in the primary cache but are in physical
memory.

The texels: (i0, j0, map), (i1, j0, map), (i0, j1, map), (i1, j1, map) for texture 0 and for texture 1 are
checked in parallel in the Primary Cache Manager to see if they are in the primary cache.

d) One texel from texture 0 and one texel from texture 1 miss the primary cache

The cache allocation for both banks is checked simultaneously and the missing texels passed to the
Address Generator via theAG0 and AG1 FIFOs for the corresponding banks. The step message, with
the address of each texel filled in, is written to the M FIFO and the texel read count field on this step set
to two. This part of the processing all happens in the same cycle so the fragment throughput is
maintained.

The Address Generator processes the texel reads one at a time. It calculates the address for the texel
in memory using the i, j and map values together with the appropriate TexelReadMode and
TextrueMapWidth values. The address is checked to see if it is in the secondary cache, and if it is then
instructions to load the primary cache from the secondary cache are sent down the T FIFO. A more
common case (for Patch32_2 or Patch2 layout) is that the secondary cache doesn’t hold the texel so
the Address Mapper is given the address and its type (logical or physical) via the AM FIFO.

The Address Mapper checks the TLB to see if the logical page is present and, if so, what its
corresponding physical page is. When the logical page is not in the TLB the Address Mapper reads
the entry in the Logical Texture Page Table for this logical page. The entry returns a resident bit and a
physical page number. The resident bit is set so the physical page number is now known. The
physical memory address is derived from the physical page and low order bits of the logical address
and passed to the Memory Controller. The TLB is updated so this logical page is the most recent one
and its corresponding physical page recorded.

When the outstanding texel data (as shown by the texel read count field) has been loaded into the
primary Texture Filter cache the data is passed on as soon as the following unit can accept it. If,
however the outstanding texel data has not been loaded then the step message is stalled until it has.

e) Two texels (from different texture maps) are not in the primary cache or in physical memory

The texels: (i0, j0, map), (i1, j0, map), (i0, j1, map), (i1, j1, map) for texture 0 and for texture 1 are
checked in parallel in the Primary Cache Manager to see if they are in the primary cache.

f) One texel from texture 0 and one texel from texture 1 miss the primary cache

The cache allocation for both banks is checked simultaneously and the missing texels passed to the
Address Generator via theAG0 and AG1 FIFOs for the corresponding banks. The step message, with
the address of each texel filled in, is written to the M FIFO and the texel read count field on this step set
to two. This part of the processing all happens in the same cycle so the fragment throughput is
maintained.

The Address Generator processes the texel reads one at a time. It calculates the address for the texel
in memory using the i, j and map values together with the appropriate TexelReadMode and
TextureMapWidth values. The address is checked to see if it is in the secondary cache, and if it is
then instructions to load the primary cache from the secondary cache are sent down the T FIFO. A
more common case (for Patch32_2 or Patch2 layout) is that the secondary cache doesn’t hold the texel
so the Address Mapper is given the address and its type (logical or physical) via the AM FIFO.

The logical page is not in the TLB and the resident bit in the Logical Texture Page Table is clear so the
Address Mapper writes to the host physical address (read from the page table) into the PCI
HostTextureAddress register, the logical page into the PCI LogicalTexturePage register and the
transfer length, memory pool and address type (set to host physical for this description) into the PCI
TextureOperation register. Finally the PCI TextureDownloadRequest bit is set. The Address Mapper
waits for the Texture Download Complete signal to be asserted by the Download Controller.

The Texture DMA Controller responds to the TextureDownloadRequest bit being set. It writes the
logical address, transfer length and memory pool into the Texture Input FIFO and follows this data with
the page of texture map data.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-28 Proprietary and Confidential �(PEFW�

The Download Controller on receiving the logical page and pool information in the Texture Input FIFO,
requests the Memory Allocator for the physical page to use for the download about to start. The
Memory Allocator uses the Physical Page Allocation Table to allocate a physical page and asks the
TLB to invalidate the logical page previously occupying (if any) the newly allocated physical page. The
Memory Allocator also updates the Logical Texture Page Table to mark the logical page as resident at
the new physical page. The physical page is returned back to the Download Controller via the MAD
FIFO.

The Download Controller on receiving the physical page transfers the texture data in the Texture Input
FIFO to the given physical page. Once this is done the TextureDownloadComplete signal is asserted
which releases the Address Mapper to complete its task.

The Address Mapper reads the Logical Texture Page Table entry for this logical page. Now that the
page is resident the physical page is read from the Logical Texture Page Table. The physical memory
address is derived from the physical page and low order bits of the logical address and passed to the
Memory Controller. The TLB is updated so this logical page is the most recent one and its
corresponding physical page recorded.

When the outstanding texel data (as shown by the texel read count field) has been loaded into the
primary Texture Filter cache the data is passed on as soon as the following unit can accept it. If,
however the outstanding texel data has not been loaded then the step message is stalled until it has.

4.11.2 Memory Interfaces
The Texture Read Unit has connections to four ports in the Memory Interface. The four ports are (in priority
order from highest to lowest):

1. Memory Allocator Port

2. Address Mapper Port

3. Texture Write Port

4. Texture Read Port

This is an absolute priority and not based on any page break considerations

Note: The first two ports are not FIFO buffered and block subsequent texture processing until their
read or write requests have been serviced.

4.11.2.1 Texture Read Port
This port is used to read texel data from memory. The addresses (after any necessary translation) are
written into the Tx Addr FIFO and sometime later the 128 bits worth of data are returned via the Tx Data
FIFO.

The following information is passed to the Memory Controller in a FIFO:

Bit No. Name Width Description
0…1 Type 2 Indicates what the target memory is. The options

are:
 0 = FB Memory
 1 = LB Memory
 2 = PCI

2…29 Addr 28 The read address of the 128 bits of memory data.

The following information is passed back from the Memory Controller in a FIFO:

Bit No. Name Width Description

0…127 Data 128 The data to be read from the memory.

4.11.2.2 Texture Write Port
This port is used by the Download Controller to write texture data into its allocated physical page. It is also
used to update the Logical Texture Page Table to mark the page as being resident once it has been
downloaded.

The following information is passed to the Memory Controller in a FIFO:

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-29

Bit No. Name Width Description

0…1 Type 2 Indicates what the target memory
is. The options are:
 0 = FB Memory
 1 = LB Memory
 2 = PCI

2…29 Addr 28 The write address of the 128 bits of
memory data.

30…45 ByteEnables 16 A high on a bit enables that byte to
be written. The ls byte enable
corresponds to data bits 0…7.

46…
173

Data 128 The data to be written to the
memory.

The following information is passed back from the Memory Controller:

Bit No. Name Width Description

0 TxWrComplete 1 This signal is asserted by the
memory controller when the FIFO
is empty and all writes from this
port, the Memory Allocator Port
and the Address Mapper Port have
been written to memory so can be
read from another port.

4.11.2.3 Memory Allocator Port
This port is used to update the Logical Texture Page Table with information from the host and to remove
references from a physical page to a logical page in the Physical Page Allocation Table. The port is 64 bits
wide (to save routing a 128 bit data bus from the Memory Controller). The read and write operations are
buffered by a single level FIFO (to provide a simple interface) so will stall until their operations are satisfied.

The following signals are passed to the Memory Controller (MC):

Bit No. Name Width Description

�«�� 7\SH� �� ,QGLFDWHV�ZKDW�WKH�WDUJHW�PHPRU\�LV���7KH�RSWLRQV�DUH��

� �

� �

�

�� &RPPDQG� �� �� �:ULWH���� �5HDG�

�«��� $GGU� ��� 7KH�ZULWH�DGGUHVV�RI�WKH����ELWV�RI�PHPRU\�GDWD���

��«��� %\WH(QDEOHV� �� $�KLJK�RQ�D�ELW�HQDEOHV�WKDW�E\WH�WR�EH�ZULWWHQ���7KH�OV�E\WH�

HQDEOH�FRUUHVSRQGV�WR�GDWD�ELWV��«����

��«�

����

:U'DWD� ��� 7KH�GDWD�WR�EH�ZULWWHQ�WR�WKH�PHPRU\���

The following signals are passed from the Memory Controller (MC):

Bit No. Name Width Description

�� 5G'DWD� ��� 7KH�GDWD�UHDG�IURP�PHPRU\�

4.11.2.4 Address Mapper Port
This port is used to update the Physical Page Allocation Table as pages are allocated or made the most
recent accessed page. It is also used to mark logical pages in the Logical Page Table as non resident
when the associated physical page is re-used. The port is 64 bits wide (to save routing a 128 bit data bus

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-30 Proprietary and Confidential �(PEFW�

from the Memory Controller). The read and write operations are buffered by a single level FIFO (to provide
a simple interface) so will stall until their operations are satisfied.

The following signals are passed to the Memory Controller (MC):

Bit No. Name Width Description
�«�� 7\SH� �� ,QGLFDWHV�ZKDW�WKH�WDUJHW�PHPRU\�LV���7KH�RSWLRQV�DUH��

�

�

�

�� &RPPDQG� �� �� �:ULWH���� �5HDG�

�«��� $GGU� ��� 7KH�ZULWH�DGGUHVV�RI�WKH����ELWV�RI�PHPRU\�GDWD���

��«��� %\WH(QDEOHV� �� $�KLJK�RQ�D�ELW�HQDEOHV�WKDW�E\WH�WR�EH�ZULWWHQ���7KH�OV�E\WH�

HQDEOH�FRUUHVSRQGV�WR�GDWD�ELWV��«����

��«�

����

:U'DWD� ��� 7KH�GDWD�WR�EH�ZULWWHQ�WR�WKH�PHPRU\���

The following signals are passed from the Memory Controller (MC):

Bit No. Name Width Description
�� 5G'DWD� ��� 7KH�GDWD�UHDG�IURP�PHPRU\�

4.11.3 Translation Look-Aside Buffer (TLB)
 The TLB responds to two command streams (serviced in round robin order):
• The Memory Allocator requests a logical page be invalidated if it is present.
• The Address Mapper checks if the logical to physical page mapping is already known before it takes

the slower route of reading the Logical Texture Page Table. The TLB is fully associative and can
provide the physical page (if present) in a single cycle. The update time can take longer if necessary
as this will only occur after a Logical Texture Page Table read.

The TLB holds 16 entries for Permedia4. The TLB can report a maximum of one match for a given logical
page

4.11.4 Memory Allocater
The Memory Allocator responds to two command streams (serviced in round robin order):
• The Download Controller asks for a physical page at the start of a new texture download. The tail page

for the requested memory pool is allocated. The Physical Page Allocation Table is then updated to
move the tail page to the head of the pool. The previous logical page assigned to the allocated
physical page is marked as non resident in the Logical Texture Page Table and invalidated in the TLB.
The physical page is returned to the Download Controller via the Memory Allocator FIFO.

• The Memory Allocator then reads the first word to find out about the texture which is just about to be
received. It asks the Memory Allocator for a suitable physical page and once it has received this it
copies the texture data into the memory. If the logical page number of the texture matches up with the
one the Address Mapper was waiting for, the Address Mapper is notified it can continue by the
TextureDownloadComplete signal and TextureDownloadRequest is cleared.

This subunit interacts with the Address Mapper via the following signals:

Name Width Description

3FL7H[WXUH'RZQORDG�

5HTXHVW�

�� $VVHUWHG�E\�WKH�$GGUHVV�0DSSHU�ZKHQ�LW�KLWV�D�SDJH�IDXOW�DQG�QHHGV�

D�WH[WXUH�SDJH�GRZQORDGHG�DQG�WKDW�SDJH�LV�QRW�FXUUHQWO\�EHLQJ�

GRZQORDGHG���7KLV�LV�FOHDUHG�E\�WKH�'RZQORDG�&RQWUROOHU���7KLV�

VLJQDO�WHOOV�WKH�7H[WXUH�'RZQORDG�&RQWUROOHU�D�GRZQORDG�LV�QHHGHG��

SFL/RJLFDO7H[WXUH3DJH� ��� 7KLV�LV�VHW�E\�WKH�$GGUHVV�0DSSHU�WR�VKRZ�ZKDW�ORJLFDO�SDJH�LW�LV�

UHTXHVWLQJ��

Permedia4 Programmer’s Guide Volume I Buffer and Cache

�(PEFW Proprietary and Confidential 4-31

7H[WXUH'RZQORDG�

5HTXHVW�

�� 7KLV�LV�DVVHUWHG�E\�WKH�$GGUHVV�0DSSHU�ZKHQ�LW�KLWV�D�SDJH�IDXOW�DQG�

QHHG�D�WH[WXUH�SDJH�GRZQORDGHG���7KLV�LV�FOHDUHG�E\�WKH�'RZQORDG�

&RQWUROOHU�ZKHQ�WKLV�SDJH�KDV�EHHQ�GRZQORDGHG�DQG�WKH�/RJLFDO�

7H[WXUH�3DJH�7DEOH�XSGDWHG���7KLV�VLJQDO�WHOOV�WKH�'RZQORDG�

&RQWUROOHU�WKH�SFL/RJLFDO7H[WXUH3DJH�UHJLVWHU�KROGV�D�YDOLG�SDJH�

QXPEHU�VR�LW�FDQ�LQIRUP�WKH�$GGUHVV�0DSSHU�WKH�GRZQORDG�LV�

FRPSOHWH��DVVXPLQJ�WKH�SDJH�PDWFKHV���

7H[WXUH'RZQORDG,Q�

3URJUHVV�

�� 7KLV�LV�DVVHUWHG�E\�WKH�'RZQORDG�&RQWUROOHU�DV�LV�XVHG�WR�YDOLGDWH�

WKH�'RZQORDG/RJLFDO3DJH�YDOXH���7KH�$GGUHVV�0DSSHU�XVHV�WKLV�WR�

FKHFN�LI�WKH�GRZQORDG�LW�ZDQW�LV�FXUUHQWO\�EHLQJ�GRQH��

'RZQORDG/RJLFDO3DJH� ��� 7KLV�LV�VHW�E\�WKH�'RZQORDG�&RQWUROOHU�WR�LGHQWLI\�WKH�ORJLFDO�SDJH�LW�

LV�LQ�WKH�SURFHVV�RI�GRZQORDGLQJ��

7H[WXUH'RZQORDG�

&RPSOHWH�

�� 7KLV�LV�DVVHUWHG�E\�WKH�'RZQORDG�&RQWUROOHU�ZKHQ�LW�KDV�ILQLVKHG�

GRZQORDGLQJ�D�WH[WXUH�WKH�$GGUHVV�0DSSHU�LV�ZDLWLQJ�RQ��

4.11.5 Dispatcher
The Dispatcher holds the data part of the secondary cache and forwards texel data to the primary cache (in
the Filter Unit). Texel data is allowed to flow through whenever it arrives from the Memory Controller, but
under control from commands received via the T FIFO. A count of the texel data loaded for each filter bank
(i.e. texture map) is maintained so that an active step message can be delayed until all the texel data it
requires is present in the Filter Unit. In normal operation this delay should not be invoked very often.

The Dispatcher also handles span processing. This involves zero extending the texel data to a 64 bit
bitmask, byte swapping, mirroring and inverting when necessary and finally anding the pixel mask in the
span step message.

4.12 Texture DMA Controller

The P4 Texture DMA Controller handles a single request at a time. The following hardware signals are used
to communicate between the Texture Read Unit and the Texture DMA Controller
� pciTextureDownloadRequest. This signal is asserted by Texture Read Unit to request a texture

download. It is deserted once the texture download has started.
• TextureFIFOFull. This signal is asserted by the Texture Read Unit when it is not able to accept any

more data being written into the TextureInput FIFO.

When the Texture DMA Controller has detected a download request it reads three PCI registers from the
requester. These registers are:
• HostTexturePage. This register holds the host page (in bits 0…19) where the texture resides. This is

either a physical page or a virtual page. A bit in the TextureOperation register identifies the type of
page. If the page is a virtual page then an interrupt is generated and the host will read the page and
initiate the DMA once the data has been made available. The conversion from page to address is done
by multiplying by 4096.

• LogicalTexturePage. This register holds the logical page for the texture data and is returned back to
the Texture Read Unit in bits 0…1527 of the first entry written to the Texture Input FIFO (the FIFO is
128 bits wide) as a header preceding the actual texture data.

• TextureOperation. This register holds the following information:

Bit No. Name Description

�«�� /HQJWK� 7UDQVIHU�OHQJWK�LQ�PXOWLSOHV�RI�����ELW�ZRUGV��PD[LPXP�

EHLQJ�����

�«��� 0HPRU\3RRO� ,GHQWLILHV�ZKLFK�PHPRU\�SRRO�WKH�SK\VLFDO�SDJH�LV�WR�EH�

DOORFDWHG�IURP��

��� +RVW9LUWXDO$GGUHVV� GRZQORDG�LQWHUUXSW�LV�JHQHUDWHG��LI�HQDEOHG��

This data (and bits 12…31) are returned in bits 32…64 of the first entry written to the Texture Input FIFO
(the FIFO is 128 bits wide) as a header preceding the actual texture data.

27All 32 bits of the register are returned in bits 0…31 to allow for future capabilities.

Buffer and Cache� � Permedia4 Programmer’s Guide Volume I

4-32 Proprietary and Confidential �(PEFW�

If the texture download request results in a TextureDownload interrupt being generated the TextureAddr
PCI register is loaded with the virtual address and the TextureOperation PCI register is loaded with the
TextureOperation data read from Texture Read before the interrupt is generated. The host services the
interrupt, reads these two registers and provides the data. When the data is available in memory the
physical address where the data is located is written in to the TextureAddr PCI register. This wakes up the
texture download DMA controller and it executes the download.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-1

��
���������	
����

The Permedia4 video system comprises three units; Video Unit, Video Overlay Unit, and RAMDAC. They
work together to generate the display signal sent to the monitor, or flat-panel display. The Video Unit and
RAMDAC are the key components of the system, responsible for displaying framebuffer images generated
by the Permedia4 graphics core.

The Video Unit reads the raw framebuffer image data from memory, and forwards it to the RAMDAC, along
with the video timing signals (HSync, VSync and Blank). The RAMDAC takes the raw image data from the
Video Unit, extracts the individual pixels, and converts them into the 3 analogue outputs to the monitor.

The Video Overlay Unit compliments the functionality provided by Video Unit and RAMDAC, by providing a
scaleable overlay region which the RAMDAC can combine with the framebuffer image. One application of
the Video Overlay Unit is the display of MPEG video data, either in a window, or fullscreen, with the Video
Overlay Unit automatically scaling the image to fit the destination region.

Both standard analogue output to a monitor, and digital output to a flat-panel display are supported by the
RAMDAC.

To properly configure the video system to drive the display, both the Video Unit, and the RAMDAC must be
initialised with suitable video timing parameters. The RAMDAC acts as the master, strobing data from the
Video Unit at the correct frequency. It is driven by either an externally, or internally generated DClk signal.

Note: When the SVGA Unit is active, it takes over the video system, and the Video Unit is disabled. The
SVGA Unit must be programmed directly to set up the video timing when in this mode.

5.1 Video Unit

The video unit is responsible for generating the video timing signals (HSync, VSync, and Blank), and
reading the raw framebuffer image data from memory. This data is then forwarded to the RAMDAC for
display on a suitable monitor. In addition, the external DDC2 compatible I2C bus is controlled through this
unit.

5.1.1 Programming The Video Unit Timing Registers
The Video Unit must be programmed with the required video timing information and memory image
parameters. The timing information controls the size and position of the image on the display, while the
memory image parameters control the area of memory to be displayed.

All horizontal parameters in the Video Unit are expressed in 128-bit memory units. This restricts the
granularity of these parameters to 4, 8 or 16 pixels, depending on the pixel depth.

e.g. If the pixel depth of the framebuffer image is 8-bits, then each 128-bit memory location holds 128/8 =
16 pixels, and hence all horizontal parameters are expressed as multiples of 16 pixels.

If the pixel depth of the framebuffer image is 32-bits, then each word of data holds only 4 pixels, and hence
all horizontal parameters are expressed as multiples of 4 pixels.

If 8 pixel granularity is essential when using 8-bit pixel formats (e.g. for VESA timing compliance), the Video
Unit can be programmed to use image byte doubling. However this requires the RAMDAC to be driven at
twice the required dot clock, and so imposes a limit on the refresh rate. See section 5.1.3.6 for full details of
this mode.

5.1.2 Setting the display memory region
The display memory region is defined by the ScreenBase, ScreenStride, and ScreenBaseRight registers.

All three registers are in 128-bit memory units.

5.1.2.1 ScreenBase
The ScreenBase register specifies the address in memory of the first visible pixel of the image. In stereo
display mode, this register specifies the address in memory of the left hand image (See section 5.1.3.3).

Video System� � Permedia4 Programmer’s Guide Volume I

5-2 Proprietary and Confidential �(PEFW�

5.1.2.2 ScreenStride
The ScreenStride register specifies the number of words between consecutive scanlines in memory.

e.g. If the image in the framebuffer is 1024 pixels wide, and the pixel depth is 32, then ScreenStride = (1024
* 32) / 128 = 256

Note: ScreenStride is not necessarily the same as screen width. If the image in memory is 1024 pixels wide,
but the display width is 800 pixels, then ScreenStride must reflect the 1024 pixel figure, not the 800 pixel
figure.

5.1.2.3 ScreenBaseRight
The ScreenBaseRight register is used only when stereo display mode is enabled in the VideoControl
register. It specifies the address in memory of the first visible pixel of the right hand image (See section
5.1.3.3).

1.1.14 Setting Video Timing Parameters
The video timing parameters are controlled by 9 registers; HTotal, HgEnd, HbEnd, HsStart, HsEnd,
VTotal, VbEnd, VsStart, and VsEnd.

The diagram below shows the relationship of each of these parameters.

ScreenStride

HTotal

Displayed Area

VTotal

VbEnd

HbEnd

VsStart
VsEnd

HgEnd

HsStart
HsEnd

Address = ScreenBase
First pixel

Figure 5.1 Video Timing Parameters

5.1.2.4 HTotal
This register holds the total number of horizontal memory cclocks per display scanline. It should be set to :

 ((Horizontal Total Period in pixels * Depth) / 128) - 1

5.1.2.5 HgEnd
This register indicates the horizontal cycle on which the Video Unit must start issuing video data to the
RAMDAC. It is usually set to the same value as HbEnd. In some circumstances (such as when panning is
activated) the RAMDAC requires video data one or more cycles before the end of horizontal blanking. In
these situations HgEnd will be slightly lower than HbEnd.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-3

5.1.2.6 HbEnd
Indicates the total width of the horizontal blank region, including the front porch and HSync. It should be set
to :

 (Horizontal Blank Period in pixels * Depth) / 128

5.1.2.7 HsStart
Indicates the start of the HSync period. It should be set to :

 (Horizontal Front Porch in pixels * Depth) / 128

5.1.2.8 HsEnd
Holds the value of the first horizontal memory clock after the horizontal sync pulse. It should be set to :

 ((Horizontal Front Porch in pixels + Horizontal Sync Width in pixels) * Depth) / 128

5.1.2.9 VTotal
Holds the count of the last scanline in the display, including the vertical blank period. It should be set to :

 Vertical Total Period - 1

5.1.2.10 VbEnd
Holds the scanline index of the first scanline out of vertical blank. It should be set to :

 Vertical Blank Period

5.1.2.11 VsStart
Holds the line index of the last scanline before the vertical sync pulse. It should be set to :

 Vertical Front Porch - 1

5.1.2.12 VsEnd
Holds the line index of the last scanline within the vertical sync pulse. It should be set to :

 (Vertical Front Porch + Vertical Sync Height) - 1

5.1.3 Configuring the VideoUnit
The VideoControl register provides various control bits which affect the behaviour of the VideoUnit timing
parameters, or enable/disable various special modes, such as framebuffer un-patching, and stereo support.

Bit 0 of this register is the unit enable toggle. This bit must be set to enable the VideoUnit output to the
RAMDAC.

The DisplayDisable bit of the VideoControl register blanks the video display, and suppresses all reads
from video memory. All video timing data is generated as normal, and the RAMDAC may still display its
hardware cursor, and/or Video Overlay Image, if enabled. This is particularly useful for fullscreen video
overlays, where none of the framebuffer image will be visible on the display, and hence reading from
memory would waste bandwidth.

5.1.3.1 Video Sync Control
The HSyncCtl,VSyncCtl and BlankCtl fields of the VideoControl register configure the polarities of the
timing signals sent to the RAMDAC and permit manual override of the HSync and VSync outputs.

The RAMDAC only supports active high polarity on its input signals, and so these registers should never be
programmed to supply active low signals to the RAMDAC. The RAMDAC provides it’s own control over the
output polarities for VSync and HSync.

The HSync and VSync fields can also be used to directly set the value of the video sync outputs. This is
used to control certain special monitor features, such as DDC (See section 5.1.3.7)

5.1.3.2 Buffer Swap Control
The BufferSwap field of the VideoControl register controls the time at which writes to the ScreenBase and
HgEnd registers take effect. There are three possible modes of operation:

FreeRunning:

In this mode, writes to the ScreenBase and HgEnd registers take immediate effect. This can cause tearing
of the video image if the registers are updated part way through a frame.

SyncOnFrameBlank:

Video System� � Permedia4 Programmer’s Guide Volume I

5-4 Proprietary and Confidential �(PEFW�

In this mode, writes to the ScreenBase and HgEnd registers do not take effect, until the next vertical blank
period. If the image is already in vertical blank, the writes have immediate effect.

LimitToFrameRate:

In this mode, writes to ScreenBase and HgEnd have immediate effect only if they have not already been
written on the current frame. If two or more writes occur within the same frame, then subsequent writes are
delayed until the next vertical blank period.

This avoids animation frame-rate errors which may occur if the GP Core is unable to keep up with the video
frame-rate, but can cause tearing of the image.

The BypassPending field of the VideoControl register indicates whether the last write to ScreenBase or
HgEnd has taken effect or not. If this bit is 1, the last write is still pending. If this bit is 0, all previous writes
have taken effect.

5.1.3.3 Displaying Stereo Images
The VideoUnit and RAMDAC support the display of stereo video images. This is achieved by alternating
display between two buffers, and driving the VidRightEye pin, to indicate which frame is currently being
displayed.

To enable stereo output, the Stereo bit of the VideoControl register is set, and the required pin output
polarity is set in the RightEyeCtl field of the VideoControl register.

Two video base addresses are required for stereo output. The address of the left image should be loaded
into the ScreenBase register, and the address of the right image should be loaded into the
ScreenBaseRight register. Both buffers must be the same size, so only one ScreenStride register is
required.

The RightFrame field of the VideoControl register indicates which frame is currently being displayed by the
VideoUnit. If this bit is 0, then the left frame is being displayed. If this bit is 1, then the right frame is being
displayed. This bit is read only.

5.1.3.4 Displaying Patched Framebuffers
The GP Core can be configured to render into framebuffer memory in a 64 pixel wide by 16 pixel high
patched format (patch64 mode). In some circumstances this can improve memory efficiency by reducing
the number of page breaks. If patch64 mode is being used by the GPCore, then the VideoUnit must be
configured to reflect this, so that it can un-patch the image before displaying it.

Patching is enabled by the PatchEnable bit of the VideoControl register. In addition, the PixelSize field of
this register must also be set, to reflect the pixel depth of the framebuffer. The PixelSize field only affects
patched mode in the VideoUnit. If patching is not being used, then PixelSize has no effect.

Note: Patched formats are not supported when using line doubling (see below).

When patching is enabled, the ScreenBase and ScreenBaseRight registers must be aligned to the start of
a patch. If a non patch-aligned screen origin is required, then the PatchOffsetX and PatchOffsetY fields of
the VideoControl register must be adjusted to reflect the start offset within the patch.

5.1.3.5 Driving Very Low Resolution Images
Permedia4’s video system has no practical lower bound on the display resolutions it can support. However
many modern monitors are not able to lock on to low frequency signals such as that required for 320x200
resolution framebuffers. To help overcome this problem, the VideoUnit and RAMDAC can be configured to
double the horizontal and vertical resolutions by pixel and line replication. The horizontal and vertical
frequencies seen by the monitor are then twice the internal frequency.

Enabling the LineDouble bit in the VideoControl register causes the Video Unit to duplicate every scanline
sent to the RAMDAC. All vertical timing information must be set up for the internal (un-doubled) frequency.
i.e. if the framebuffer resolution is 200 lines, and this is being line doubled to 400 lines, the vertical timing
parameters must be set to reflect the 200 line resolution.

Horizontal pixel doubling is performed by the RAMDAC. Once enabled (By setting the PixelDouble bit in the
RAMDAC RDMiscControl register), each pixel is replicated before being transmitted to the monitor.
Enabling pixel doubling also causes the horizontal timing information to be replicated. This effectively
means that the horizontal timing parameters must be set to reflect the lower resolution frequencies. i.e. if
the framebuffer resolution is 320 pixels, and this is being pixel doubled to 640 pixels, the horizontal timing
parameters must be set to reflect the 320 pixel resolution.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-5

When using horizontal, or vertical doubling, the RAMDAC dot clock frequency must be set to match the
monitor frequency. i.e. for a 320x200 source image with doubling in both axes, the dot clock frequency must
be set for a 640x480 display.

5.1.3.6 Driving 8-bit Images With 8 Pixel Timing Granularity
All horizontal timing has a granularity of 128-bit memory units. This is usually fine for 16-bit and 32-bit
framebuffer depths, because the VESA standard specifies timings to 8-pixel granularity. For 8-bit color
depths however, this imposes a minimum granularity of 16-pixels.

If VESA requirements must be met with 8-bit displays, then the Video Unit can be configured to perform
byte doubling. This has a similar effect as RAMDAC pixel doubling described in section 5.1.3.5, in that the
horizontal frequency is doubled. Each byte of image data is replicated before sending it to the RAMDAC,
hence doubling the external dot-clock frequency. Each 128-bit data packet sent to the RAMDAC now
contains only 64-bits of image data, and therefore the horizontal timing parameters also represent 64-bit (8
pixel) spans.

Byte doubling is enabled by setting the ByteDouble bit in the Video Unit MiscControl register. When using
byte doubling, the horizontal timing parameters should be adjusted to 64-bit units, instead of the usual 128-
bit units, and the dot clock multiplied by 2.

5.1.3.7 Display Data Channel
The DDC interface allows Permedia4 to read timing information from a compatible monitor. Both DDC1 and
DDC2 protocols are supported.

For DDC1, the data is read one bit at a time, and is clocked from the monitor by the vertical sync signal.
The vertical sync should be controlled directly from software using the VideoControl register (See section
5.1.3.1)

Vertical sync should be driven high and the data will become valid 30 microseconds later; when the data
has been read the vertical sync should be driven low for at least 20 microseconds before it is driven high
again. Accurate timing can be derived from the MemCounter register in the memory controller register
group. The input data is read from the DataIn bit of the DisplayData register.

For DDC2, an I2C bus interface is used. The I2C bus is monitored and controlled via the DisplayData
register. The software can detect an external request, or data phase by enabling the DDC Interrupt in the
IntEnable register. When a DDC2 start condition is detected, the Start bit of the DisplayData register is set.
Similarly a Stop condition causes the Stop bit to be set. When data is transferred, it is latched into the
LatchedData field, and the DataValid field is set.

The host may insert wait states to slow down a data transfer by setting the Wait bit of the DisplayData
register. This effectively holds the clock output low until the bit is cleared again.

The Start, Stop and DataValid bits within the DisplayData register may be cleared by writing to this register
with the respective bit positions set to 1.

The ClkIn and DataIn fields of the DisplayData register indicate the current state of the respective lines on
the I2C bus.

The host may control the bus, causing Permedia4 to become a bus master, by writing to the ClkOut and
DataOut fields of the DisplayData register.

5.1.4 Video FIFO control
The Video Unit framebuffer image returns data from the memory controller in a 32 entry FIFO. To ensure
efficient use of memory, read requests will usually be low priority requests, causing several consecutive
requests to queue up in the memory controller, and then complete in a burst. The priority of the requests is
controlled by the number of returned data items in the video FIFO. If there is not enough data queued up in
the FIFO, the Video Unit will assert high priority to the memory controller. The thresholds for high and low
priority are controlled by the FifoControl register. If the number of spaces in the FIFO is greater than or
equal to the HighThreshold field of this register, the Video Unit asserts high priority. If the number of spaces
is less than or equal to LowThreshold, high priority will be deasserted.

5.1.4.1 Interrupt Generation
The Video Unit provides three interrupt outputs; Vertical Retrace Interrupt, Scanline Interrupt, and Video
DDC Interrupt. These are visible in the Region 0 IntFlags register, and are enabled and disabled in the
Region 0 IntEnable register. The interrupts are cleared by writing to the IntFlags register with the
corresponding bits set to 1.

The Vertical Retrace Interrupt is signalled at the rising edge of VSync, if enabled.

Video System� � Permedia4 Programmer’s Guide Volume I

5-6 Proprietary and Confidential �(PEFW�

The Scanline Interrupt is generated at the start of the video scanline specified in the InterruptLine register.

The VidDDC Interrupt indicates that the chip has detected either an DDC2 start condition, or a DDC2 data
phase.

In addition, FIFO underflow sets the VideoFifoUnderflow error flag in the Region 0 ErrorFlags register.
Error conditions in the ErrorFlags register can be made to signal an interrupt, by setting the ErrorFlag bit in
the IntEnable register. The source of the error can then be determined, by examining the ErrorFlags
register.

5.1.5 Example Timing Values

5.1.5.1 Example 1 - Timing Values for 640x480 16 BPP 75Hz

VESA Timings for this mode are:

HSync front porch 24 pixels
HSync width 64 pixels
HSync back porch 88 pixels
Horizontal blank width 176 pixels (24 + 64 + 88)
Horizontal total width 816 pixels (640 + 176)
Scanline(480 + 22)

HsStart = HSync front porch in 128-bit words
 = (24 * 16) / 128
 = 3
HsEnd = (HSync front porch + HSync width) in 128-bit words
 = ((24 + 64) * 16) / 128
 = 11
HbEnd = Horizontal blank width in 128-bit words
 = (176 * 16-bits) / 128
 = 22
HgEnd = HbEnd
 = 22
HTotal = (Horizontal total width in 128-bit words) - 1
 = ((816 * 16) / 128) - 1
 = 101
VsStart = VSync front porch - 1
 = 1 - 1
 = 0
VsEnd = (VSync front porch + VSync width) – 1
 = (1 + 3) - 1
 = 3
VbEnd = Vertical blank period
 = 22
VTotal = Vertical line total – 1
 = 502 – 1
 = 501

5.1.5.2 Example 2 - Timing Values for 800x600 32 BPP 75Hz

VESA Timings for this mode are:

HSync front porch 40 pixels
HSync width 80 pixels
HSync back porch 120 pixels
Horizontal blank width 240 pixels (40 + 80 + 120)
Horizontal total width 1040 pixels (800 + 240)

VSync front porch 1 scanline
VSync width 3 scanlines
VSync back porch 23 scanlines
Vertical blank period 27 scanlines (1 + 3 + 27)

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-7

Vertical total period 627 scanlines (600 + 27)

HsStart = HSync front porch in 128-bit words
 = (40 * 32) / 128
 = 10
HsEnd = (HSync front porch + HSync width) in 128-bit words
 = ((40 + 80) * 32) / 128
 = 30
HbEnd = Horizontal blank width in 128-bit words
 = (240 * 32) / 128
 = 60
HgEnd = HbEnd
 = 120
HTotal = (Horizontal total width in 128-bit words) - 1
 = ((1040 * 32) / 128) - 1
 = 259
VsStart = VSync front porch - 1
 = 1 - 1
 = 0
VsEnd = (VSync front porch + VSync width) – 1
 = (1 + 3) - 1
 = 3
VbEnd = Vertical blank period
 = 27
VTotal = Vertical line total – 1
 = 627 – 1
 = 626

5.2 RAMDAC

The primary purpose of the RAMDAC is to convert the internal digital video data, from the Video Unit, into
an analogue output suitable for driving a monitor. Data is supplied from the Video Unit as raw 128-bit
packed words, so the RAMDAC must extract the individual pixel values from this data.

The RAMDAC can overlay, or blend, pixel data from the Video Overlay Unit, and overlay a hardware cursor
before the final data is send to the display. An alternative form of overlay is also available, in addition to the
Video Overlay. This feature allows an 8-bit overlay image, stored in the alpha-channel of the framebuffer, to
be applied over the framebuffer image.

Permedia4 provides two internal PLL’s for clock generation, in addition to the external clock sources. All
clock selection is controlled through the RAMDAC.

5.2.1 Programming The RAMDAC registers
The RAMDAC registers are either accessed directly or indirectly. The direct registers are accessed by
reading or writing the appropriate offset. The indirect registers are accessed by writing their respective 16-
bit index to the Index Registers (RDIndexLow and RDIndexHigh) and then either reading from, or writing
to, the RDIndexedData Register.

For example, to write to the RDColorFormat register (index 004h), the index is first set by writing 04h to
RDIndexLow, and 00h to RDIndexHigh. The data can then be written to the RDIndexedData register.

Accesses to several consecutive indirect registers can be accelerated by enabling auto-increment mode.
This is achieved by setting bit 0 of the RDIndexControl register. Once enabled, the indirect address
registers are automatically advanced after every access, permitting consecutive registers to be accessed
with a single read/write cycle.

The following tables show the direct and the indirect registers.

Offset (hex) Mode Register Name

���� 5�:� 5'3DOHWWH:ULWH$GGUHVV�

���� 5�:� 5'3DOHWWH'DWD�

���� 5�:� 5'3L[HO0DVN�

���� 5�:� 5'3DOHWWH5HDG$GGUHVV�

���� 5�:� 5',QGH[/RZ�

���� 5�:� 5',QGH[+LJK�

Video System� � Permedia4 Programmer’s Guide Volume I

5-8 Proprietary and Confidential �(PEFW�

���� 5�:� 5',QGH[HG'DWD�

���� 5�:� 5',QGH[&RQWURO�

 Table 5.1 RAMDAC Direct Register Map

Index (hex) Mode Register Name

���� 5�:� 5'0LVF&RQWURO�

���� 5�:� 5'6\QF&RQWURO�

���� 5�:� 5''$&&RQWURO�

���� 5�:� 5'3L[HO6L]H�

���� 5�:� 5'&RORU)RUPDW�

���� 5�:� 5'&XUVRU0RGH�

���� 5�:� 5'&XUVRU&RQWURO�

���� 5�:� 5'&XUVRU;/RZ�

���� 5�:� 5'&XUVRU;+LJK�

���� 5�:� 5'&XUVRU</RZ�

��$� 5�:� 5'&XUVRU<+LJK�

��%� 5�:� 5'&XUVRU+RW6SRW;�

��&� 5�:� 5'&XUVRU+RW6SRW<�

��'� 5�:� 5'2YHUOD\.H\�

��(� 5�:� 5'3DQ�

��)� 5� 5'6HQVH�

���� 5�:� 5'&KHFN&RQWURO�

���� 5� 5'&KHFN3L[HO5HG�

��$� 5� 5'&KHFN3L[HO*UHHQ�

��%� 5� 5'&KHFN3L[HO%OXH�

��&� 5� 5'&KHFN/875HG�

��'� 5� 5'&KHFN/87*UHHQ�

��(� 5� 5'&KHFN/87%OXH�

��)� 5�:� 5'6FUDWFK�

���� 5�:� 5'9LGHR2YHUOD\&RQWURO�

���� 5�:� 5'9LGHR2YHUOD\;6WDUW/RZ�

���� 5�:� 5'9LGHR2YHUOD\;6WDUW+LJK�

���� 5�:� 5'9LGHR2YHUOD\<6WDUW/RZ�

���� 5�:� 5'9LGHR2YHUOD\<6WDUW+LJK�

���� 5�:� 5'9LGHR2YHUOD\;(QG/RZ�

���� 5�:� 5'9LGHR2YHUOD\;(QG+LJK�

���� 5�:� 5'9LGHR2YHUOD\<(QG/RZ�

���� 5�:� 5'9LGHR2YHUOD\<(QG+LJK�

���� 5�:� 5'9LGHR2YHUOD\.H\5�

��$� 5�:� 5'9LGHR2YHUOD\.H*�

��%� 5�:� 5'9LGHR2YHUOD\.H\%�

��&� 5�:� 5'9LGHR2YHUOD\%OHQG�

��'���()� � 5HVHUYHG�

�)�������� 5�:� 3//�6HWXS�5HJLVWHUV��6HH�VHSDUDWH�WDEOH��

���������� � 5HVHUYHG�

��������)� 5�:� 5'&XUVRU3DOHWWH������

�������))� � 5HVHUYHG�

�������))� 5�:� 5'&XUVRU3DWWHUQ��������

Table 5.2 RAMDAC Indirect Register Map

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-9

5.2.2 Basic RAMDAC Configuration
The RAMDAC must be configurared to match the layout of the framebuffer data being sent from the Video
Unit, and the DClk frequency set according to the video timing requirements. See section 5.2.5.5 for details
on setting the system clocks.

5.2.2.1 Defining the framebuffer pixel format
The framebuffer pixel format is defined by the RDPixelSize and RDColorFormat indirect registers.

The RDPixelSize register should be initialised to reflect the depth of the framebuffer. Write 0 for 8-bit pixel
depth, 1 for 16-bit depth, or 2 for 32-bit depth.

The RDColorFormat register has 3 fields; ColorFormat, RGB, and LinearColorExtension.

Set the ColorFormat field to match the GP Core framebuffer format. Note that the RAMDAC ColorFormat
values do not have the same mapping as those in the GP Core. For example, the value required for
RGB565 format in the RAMDAC RDColorFormat register is 16, but the GP Core DitherMode register
value for the same mode is 3.

The RGB field of the RDColorFormat register indicates the pixel color order. If the value in this field is 1,
the color order is RGB, if the value is 0, the color order is BGR.

The LinearColorExtension field of the RDColorFormat register controls the scaling algorithm used to
convert non 8-bit color components into 8-bits. Color format RGB 565, for example, uses 5-bits for red and
blue, and 6-bits for green. These components must be scaled to 8-bits internally. If the
LinearColorExtension bit is 0, then color components are scaled by shifting left, and filling the low bits with
zero. If this bit is 1, then color components are scaled by shifting left, and then copying the high order bits
into the newly exposed low bits.

5.2.2.2 Configuring Sync Signals
The RAMDAC RDSyncControl register is used to control the output sync signals to the display. The
VSyncCtl and HSyncCtl fields select the output polarities of the VSync and HSync signals, and also provide
options to directly drive these signals high, low, or tri-state. The VSyncOverride and HSyncOverride fields
provide a second mechanism for forcing the VSync and HSync signals to their high states. The
VSyncOverride and HSyncOverride fields take priority over the VSyncCtl and HSyncCtl fields, and hence
provide a convenient means to temporarily pull the syncs high (for instance to trigger monitor standby
mode), without affecting any assigned output polarity settings.

5.2.2.3 Controlling the DAC output signals
The three analogue color output signals can be individually controlled via the RDDACControl register.

The BlankPedestal field of the RDDACControl register enables pedestal blanking, in which the color
channels are ‘propped-up’ by a pedestal voltage when in active video. This permits a suitable monitor to
differentiate between blank and active by the voltage level of the color outputs. If this bit is 1, pedestal
blanking is enabled. If this bit is 0, pedestal blanking is disabled.

The three color outputs may be individually disabled by enabling one or more of the BlankRedDAC,
BlankGreenDAC, or BlankBlueDAC fields in the RDDACControl register. When these bits are set to 1, the
corresponding output is forced low, effectively removing the associated color from the display.

The SyncOnGreen field enables sync-on-green mode, in which the VSync and HSync signals are combined
with the green output signal. This functionality may not be available on all versions of Permedia4.

The DACPowerCtl field of the RDDACControl register enables low power shutdown of the DAC.

5.2.2.4 Enabling CheckSums
You can use the RDCheckControl register to tell the RAMDAC to sum the R, G and B values for a scan
line. Typically, wait for Vblank, enable checksum before or after LUT, wait for RAMDAC to sum the first
active scanline (after which enable bits are Reset) then read the RDCheckLUT* or RDCheckPixel*
registers for the corresponding RGB component values..

5.2.3 Color Palette RAM
Video Image color values are usually translated by indexing each color components red, green, and blue
values into a 3x256 entry color palette. This functionality may be disabled by writing 1 into the DirectColor
field of the RDMiscControl register. The hardware cursor does not use the color palette, since it has it’s
own dedicate cursor pallete (See section 5.2.5.3 for details of the cursor palette).

Video System� � Permedia4 Programmer’s Guide Volume I

5-10 Proprietary and Confidential �(PEFW�

The color palette RAM is addressed by the RDPaletteWriteAddress and RDPaletteReadAddress
registers. These registers are automatically incremented following a RAM transfer, allowing the entire
palette to be accessed with one write to the appropriate address register. When an address register
increments beyond the last location in the RAM it is reset to the first location.

Color data may be transferred either as full width 8-bit values, or as 6-bit values. The HighColorResolution
bit of the RDMiscControl indirect register controls selection of these two modes. Setting this bit to 1
enables 8-bit mode, clearing this bit selects 6-bit mode.

Internally, the color palette RAM is 8 bits wide for each color component even when 6-bit mode is chosen. If
6-bit mode is chosen and the color data is written into the palette, the 6 LSB bits will be shifted to the 6 MSB
positions and the 2 LSBs filled with 0’s. In addition, if they are read back in the 6 bit mode, the 6 MSB bits
will be shifted to the 6 LSB positions and the 2 MSBs filled with 0’s.

To load the color palette, the CPU first writes to the RDPaletteWriteAddress register with the index of the
first entry to be modified. The selected palette RAM location is loaded a byte at a time by writing a
sequence of three bytes (red, green and blue) to the RDPaletteData register. After the blue write cycle, the
RDPaletteWriteAddress register increments to the next location.

To read from the color palette, the CPU first writes to the RDPaletteRedAddress register (Direct register:
18h) with the index of the entry to be read. Three successive reads from the palette RAM data register
supplies red, green, and blue color data for the specified location. Following the blue read cycle, BOTH the
RDPaletteReadAddress and the RDPaletteWriteAddress registers are incremented.

The RDPixelMask register is an 8-bit register used to enable or disable a bit plane from addressing the
color-palette RAM in the SVGA mode. Each palette address bit is logically ANDed with the corresponding
bit from the read-mask register before going to the palette page register and addressing the palette RAM

5.2.4 Panning The Video Display
The Video Unit can only align the framebuffer image to whole 128-bit memory words. If finer grain
positioning is required (for virtual desktop panning for instance), the RAMDAC must be used to fine tune the
position to 32-bit accuracy. The pixel granularity supported is determined by the framebuffer pixel depth; If
the framebuffer depth is 32-bits, the screen can be positioned to single pixel accuracy, but if the depth is 8-
bits, only 4 pixel accuracy is possible.

The first stage in positioning is to adjust the Video Unit base address to the start of the 128-bit memory
address of the target start pixel. If the start pixel is 128-bit aligned, then nothing more is required, and
RAMDAC panning must be disabled. If the start pixel is not 128-bit aligned, then RAMDAC panning must be
enabled.

Panning in the RAMDAC is achieved in two stages; The first shifts the 128-bit aligned image right 64-bits,
and the second stage shifts the image right 32-bits. In addition, the Video Unit must be configured to supply
the video data one cycle before the end of horizontal blanking, by setting HgEnd to (HbEnd – 1). Doing this
effectively shifts the image left by 128-bits, before the RAMDAC right shift is applied. The combined effect
of these two shifts is a left shift by 128 – (Total right shift).

The two shift modes are controlled by the RDPan register. To enable right shifts by 64-bits, set the Gate
flag in this register. To enable 32-bit shifts, enable the Pan flag. The possible combinations are illustrated in
the following table :

Gate (64) Pan (32) Adjust HgEnd ? Total Left Pan In Bits

12� 12� 12� ��

12� <(6� <(6� ���

<(6� 12� <(6� ���

<(6� <(6� <(6� ���

The following algorithm achieves 32-bit alignment of the framebuffer, using the technique described above :
ScreenBaseReg = (Address32 >> 2);
if (Address32 & 3) {
 int right_shift = 4 - (Address32 & 3);
 RDPanReg.Gate = right_shift & 2;
 RDPanReg.Pan = right_shift & 1;
 HgEndReg = HbEndReg - 1;
}
else {
 RDPanReg.Gate = 0;
 RDPanReg.Pan = 0;
 HgEndReg = HbEndReg;

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-11

}

5.2.5 Configuring The Cursor
Permedia4 supports a user-defineable hardware cursor with up to 15 colors, and a maximum size of 64x64
pixels. The cursor is configured via the CursorMode register. To make the cursor visible the CursorEnable
bit must be set, and a cursor format selected. The format defines the size of the cursor and which part of
the cursor pattern RAM should be used.

When the cursor is disabled it takes effect immediately, but when it is enabled it does not take effect until
the next frame blank. This allows easy update of the cursor pattern RAM; the cursor can be disabled, the
new pattern loaded, and then the cursor re-enabled, but the new pattern does not take effect until the next
blank which prevents tearing of the cursor.

5.2.5.1 Selecting the Cursor Format

Four types of cursor are supported; the Windows cursor, the X cursor, the 3-color cursor, and the 15-color
cursor. These are defined by the Type field of the CursorMode register.

The table below lists the supported cursor types, and shows how each of the possible cursor pattern values
are interpreted :

Pattern Value Windows X 3 Color 15 Color

�� &RORU��� 7UDQVSDUHQW� 7UDQVSDUHQW� 7UDQVSDUHQW�

�� &RORU��� 7UDQVSDUHQW� &RORU��� &RORU���

�� 7UDQVSDUHQW� &RORU��� &RORU��� &RORU���

�� +LJKOLJKW� &RORU��� &RORU��� &RORU���

������ �� �� �� &RORU�Q�

Highlight refers to the bitwise inversion of the pixel color.

The cursor can be either 32 pixels, or 64 pixels square. This is selected by the Format field of the
RDCursorMode register. If a 64 pixel square cursor is selected, then its depth is 2-bits, providing a
maximum of 3 colors (plus transparent). If a 32 pixel square cursor is selected, then the cursor pattern RAM
may be partitioned into as many as four different cursor patterns. The number of cursor patterns that can be
stored is governed by the pixel depth required. If 4 bits pixel depth is required, only two patterns are
available, but for 2-bit depths, four patterns may be stored. See section 5.2.5.4 for more details on cursor
patterns.

The ReversePixel field in the RDCursorMode register is used to reverse the order in which a row of pixels
is read from the cursor RAM. If it is enabled the incrementing locations are placed on the screen from right
to left.

The cursor may also be pixel doubled in X or Y independently. This function is normally used in conjunction
with line and pixel doubling used to support low-resolution screens (See section 5.1.3.5). Cursor doubling is
enabled by the DoubleX and DoubleY fields of the RDCursorControl register.

5.2.5.2 Positioning The Cursor

Video System� � Permedia4 Programmer’s Guide Volume I

5-12 Proprietary and Confidential �(PEFW�

The cursor position is set by the RDCursorXLow, RDCursorXHigh, RDCursorYLow, and
RDCursorYHigh registers. The XY position defined by these registers is the position of the origin of the
cursor with respect to the top left visible pixel of the screen. The RDCursorHotSpotX and
RDCursorHotSpotY registers specify the position of the origin of the cursor within its defined size.

Reading the cursor position registers returns either the current cursor position, or the last assigned cursor
position. These may not be the same because a new cursor position is not used until the RDCursorYHigh
value is written, to prevent the cursor flickering due to a partially formed address. Which value is returned is
governed by the ReadbackPosition field in the RDCursorControl register. If this bit is 1, the current visible
screen position of the cursor is returned, otherwise the currently assigned cursor position is returned.

5.2.5.3 Cursor Color Registers
The registers for the 15 cursor colors are accessed through the 45 RDCursorPalette indirect registers. The
palette is organized into RGB triplets. RDCursorPalette0 holds the red value for color 1,
RDCursorPalette1 holds the green value for color 1, e.t.c.�

5.2.5.4 Cursor RAM
The cursor is controlled through the CursorMode register. To make the cursor visible it must be enabled,
and its format selected. The format defines the size of the cursor, and which part of the cursor RAM should
be used. When the cursor is 64x64 2-bit pixels, the entire RAM is used to hold a single pattern, but if the
cursor is smaller, more than one pattern will fit in the RAM, so a cache of cursor patterns can be
maintained.

The format field selects both the size and the part of the RAM that holds the pattern. The cursor RAM is
divided into quadrants, numbered 0 and 1 on the bottom row, and 2 and 3 on the top row. The register
description defines the area of the RAM to use in terms of these quadrants.

The cursor RAM is loaded by writing to the RDCursorPattern registers; each register holds 8 bits which
make up either 4 or 2 consecutive pixels along a row depending on the number of bits per pixel.
RDCursorPattern0 holds the top left bits of the first cursor.

The diagram below illustrates the format of the cursor pattern RAM for the 64x64 4-color cursor.

5.2.5.5 RAMDAC Overlay
The RAMDAC overlay feature allows an overlay image to be stored in the alpha-channel of the framebuffer,
and displayed on top of the framebuffer image. This feature is distinct from the Video Overlay, which uses a
completely separate memory buffer, and allows arbitrary scaling to be applied. See section 5.3 for details
on programming the Video Overlay Unit.

Byte 3F1

Byte 01F Byte 011
………………….. Byte 001 Byte 00F

Byte 010

Byte 3F0

Byte 000

…………………..

…………………..

64 Pixels

64
 R

ow
s

D0 D1 D2 D3 D4 D5 D6 D7

Leftmost pixel Rightmost pixel

Byte 3FF

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-13

To enable RAMDAC overlay, set the Overlay bit in the RDMiscControl register, and define an overlay
transparency color in RDOverlayKey. Once enabled, the overlay channel is displayed in place of the
framebuffer color channel (and Video Overlay). Wherever the overlay color matches the RDOverlay value,
the overlay will be transparent, and the framebuffer (and Video Overlay, if enabled) will be visible.

When the overlay is selected, all three color channels are assigned the same overlay pixel value, and these
are always passed through the color palette, regardless of the setting of the DirectColor bit in
RDMiscControl. By programming the color palette for the overlay region, 256 color overlays can be
displayed. If direct color is enabled (by setting the DirectColor bit in RDMiscControl), full 64K or 16M color
framebuffer images can still be achieved.

5.2.6 Digital Flat Panel Display Output
In addition to driving standard analogue monitors, the RAMDAC provides a digital output port for driving flat
panel displays. This port is routed through the Video Streams B Unit, and is enabled by setting the
VSBOutput bit in the RDMiscControl register to 1.

5.2.7 Video Driver Setup
Developing an effective video driver for Permedia4 requires some experience with video drivers, a video
decoder such as the BT827A described below, and knowledge of the Video Stream registers (refer to the
Permedia4 Reference Guide volume II, Hardware registers.

5.2.7.1 Videoport Setup Notes
The Video Streams Unit transfers digital video data to and from local memory. Typically stream A isused
for input and stream B for output. The mode of operation is controlled by the VSConfiguration register,
described in the Permedia4 Reference Guide I/O Registers chapter.

In Permedia4, VS modes 2, 3 and 4 do not work. Mode 1 works but setup needs to address the hardware
context, e.g. type of decoder, PAL or NTSC data format etc. The following considerations apply:
• TVOut is supplied via the 24-bit Digital Flat Panel output described earlier. VSB does not work but the

clock (VSBClk) is still required.
• The first 4 pixels (8 bytes) in each line are unusable. The active line length should be a multiple of 8

pixels, and an extra 6 dmmy pixels are needed to ensure that the internal line end MirrorX state flag
resets correctly – hence VSAVideoEndData must end with 0xC.

• VSAVideoStartData should be aligned on a 16 byte boundary.
• Permedia4 always uses the VActive signal, i.e. VactiveVideoA flag = TRUE. If the active line portion is

defined by VSAVideoStartData and VSAVideoEndData, VActive must also be high for that period.
However during invalid pixels (e.g. from decoder scaling) neither VSAClk nor VActive can be active.

• VSAClk is still active outside the active period, but not during invalid pixels
• FIFO Control must be set so that all memory writes are high priority and done immediately.
• The VideoStreams unit should start counting from the same edge of Hsynch as the decoder (e.g. for

the BT827A, the negative edge). Hence VSConfiguration.HrefPolarityA should be set = 1 (TRUE).
Otherwise, the VSA setup is effectively unchanged from P2 and is described in the following section.

5.2.7.2 Video-in Stream A (YUV422 Input)
Video Stream A is used for input only. It accepts YUV422 data, downsizes it as required and writes it to
memory. Size reduction is always a power of 2 (1:1; 1:2, 1:4, 1:8) with independent control in X and Y.
Scaling in X includes an averaging filter, scaling in Y simply discards data. X and Y can also be mirrored.
Input data can be either YUYV or UYVY.

The video input is double- or triple-buffered through address registers, The index which selects which the
address register to use is updated automatically after each field (or frame, if the data is non-interlaced or
fields are beingcombined). Synchronization is handled by comparing the index with the value set in the
VSAVideoAddressHost register. This is host-controlled and describes the buffer in use by the host. The
VSAVideoAddressIndex register describes the buffer in use by the VSA interface.

The VSA index is incremented after each frame but cannot overtake the host register. On reset the host is
set to 2 and VSA register to 0.

Video control is determined by the video source: HRef, VRef and VActive are source-generated. VRef
marks the frame start; HRef marks the line start which moves the address generator to the next line.

VBI data can be extracted from the video data and stored elsewhere. The VBI start and end data can then
be tested against the current line count and where the test passes the video data is defined as VBI (non-

Video System� � Permedia4 Programmer’s Guide Volume I

5-14 Proprietary and Confidential �(PEFW�

scalable, non-mirrored). Both VBI and video data are restricted to active regions of the field, and qualified
by VActive. To input data the input must usually be both within region and have VActive asserted.

5.2.7.3 Setup Rules for Video Decoder BT827A and VSA
When inputting scaled PAL video it is possible to get intermitent U,V swaps at the ends of scan lines if the
decoder produces more than 2047 pixels per line (which it will do in PAL, for eample, but not NTSC or 16-
bit mode). The problem specifically arises when VSAClk is active so that clocking takes place with invalid
pixels and the VSAVideoEndData position is reached. If the Data Valid signal is still valid before
VSAVideoStartData is reached Permedia4’s counter rolls over and nothing is written to the input FIFO, so
one or more pixels may be dropped.

There are three workarounds to ensure that the VSAclk is only active when the decoder outputs valid pixels:

��� 9WI�5'PO�JSV�:7%GPO�[MXL�XLI�GPSGO�KEXIH�[MXL�(EXE:EPMH��[LMGL�MW�EGXMZI�SZIV�XLI�IRXMVI�PMRI�

VSAVactive = 1

Decoder:

VTC.CLKGATE = 1

VTC.VALIDFMT = 0

Apply the rules in the Setup Notes section above:
VSAVideoStartData = ([HDELAY*2] – 1) & 0x7F0;
VSAVideoEndData = (VSAVideoStartData + [HACTIVE *2]) & 0x7FC;

The decoder must be set up before the video port, and the videoport routine must read the decoder’s
HDELAY and HACTIVE settings. This requires that HDELAY remain constant, i.e. the decoder cannot
vary the start position without re-initialising.

��� 9WI�5'PO�KEXIH�[MXL�(:%0-(�WIX�!�869)�SRP]�HYVMRK�XLI�EGXMZI�TSVXMSR�SJ�XLI�PMRI�

Decoder:

VTC.CLKGATE = 1
VTC.VALIDFMT = 1

Video-in hardware:

VSAClk – QClk & (DVALID | (!ACTIVE))
VSAVActive = DVALID

Videoport configuration:

VSAVideoStartData = 0
VSAVideoEndData = 0x7FC

��� 9WI�5'PO�KEXIH�[MXL�(:%0-(��[LMGL�MW�EGXMZI�SZIV�XLI�IRXMVI�PMRI�

This is the preferred solution since it allows the video port to be set up independantly of the decoder.

Decoder:

VTC.CLKGATE = 1

VTC.VALIDFMT = 0

Video-in hardware

VSAVActive = DVALID & ACTIVE

VSAClk = QClk

Videoport configuration:

VSAVideoStartData = 0
VSAVideoEndData = 0x7FC

5.2.7.4 Maintaining signal sync
If the line length of the incoming video changes, for example because of switching to another video feed,
then the VSAControl.MirrorX bit (see bit 7 in the VSAControl register) state “ordering” flag can lose sync
with the actual VSAControl.MirrorX bit. A symptom of this problem is the appearance of 8-pixel wide
vertical strips.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-15

Using Videoport setup routines 2 or 3 should prevent this from happening, but it can also be corrected by
defining the line length so that some pixels are left in the input-side FIFO at line-end, which ensures that the
state “ordering” flag remains the same at the start of each line.

Similarly VSAFIFOControl should always be set to 0 (= 00XX) in order to write data to memory in high
priority mode as soon as FIFO != EMPTY. Otherwise intermittent wraparound can occur when the system
is stressed.

Note: The default value of VSAFIFOControl = 0x0808 only produces a noisy 64-pixel wide image and
should not be used.

5.2.8 Programming The Clocks
There are 7 clock domains in Permedia4; DClk, IClk, JClk, KClk, MClk, PClk and SClk. PClk is the external
PCI clock, and so can not be adjusted inetrnally. IClk and JClk are the Video Streams A and B clocks
respectively, and like PClk, are driven externally. The remaining four clock domains can be configured to
use either an external reference clock, or one of two internal Phase-Locked Loops (PLL’s). All clock
configuration (including PLL setup) is through registers in the RAMDAC.

The D,M, S, and K Clocks are controlled by indirect RAMDAC registers. These are listed in the table
below.

Index (hex) Mode Register Name

�)�� 5�:� 5''&ON6HWXS��

�)�� 5�:� 5''&ON6HWXS��

�)�� 5�:� 5'.&ON6HWXS��

�)�� 5�:� 5'.&ON6HWXS��

���� 5�:� 5''&ON&RQWURO�

���� 5�:� 5''&ON�3UH6FDOH�

���� 5�:� 5''&ON�)HHGEDFN6FDOH�

���� 5�:� 5''&ON�3RVW6FDOH�

���� 5�:� 5''&ON�3UH6FDOH�

���� 5�:� 5''&ON�)HHGEDFN6FDOH�

���� 5�:� 5''&ON�3RVW6FDOH�

���� 5�:� 5''&ON�3UH6FDOH�

���� 5�:� 5''&ON�)HHGEDFN6FDOH�

���� 5�:� 5''&ON�3RVW6FDOH�

��$� 5�:� 5''&ON�3UH6FDOH�

��%� 5�:� 5''&ON�)HHGEDFN6FDOH�

��&� 5�:� 5''&ON�3RVW6FDOH�

��'� 5�:� 5'.&ON&RQWURO�

��(� 5�:� 5'.&ON3UH6FDOH�

��)� 5�:� 5'.&ON)HHGEDFN6FDOH�

���� 5�:� 5'.&ON3RVW6FDOH�

���� 5�:� 5'0&ON&RQWURO�

�������� � 5HVHUYHG�

���� 5�:� 5'6&ON&RQWURO�

Table 5.3 RAMDAC Clock Register Map

5.2.8.1 PLL Programming
There are two internal PLL’s; One may used to drive DClk, and the other KClk. MClk and SClk can be
locked to the KClk frequency28, so may also be affected by the KClk PLL. The DClk PLL has four sets of

28 The memory clock should be tied to the graphics processor clock - refer to Permedia4 Errata and Alerts, PEREN003. If slow
speed memories are used, the memory clock may be run from, for example, an external clock with a frequency lower than the
graphics processor clock. Care should be taken when using the power saving mode of the graphics processor clock as it may result
in it having a lower frequency than the memory clock.

Video System� � Permedia4 Programmer’s Guide Volume I

5-16 Proprietary and Confidential �(PEFW�

control registers, so that several alternate frequencies can be configured, and the required frequency
selected without reconfiguring the PLL. The KClk PLL has only one set of control registers.

Each set of PLL control registers comprise 3 registers :-

ClkPreScale, ClkFeedbackScale and ClkPostScale

These are used to control the output frequency, according to the following formula :-
Output Frequency = (Frequency of reference clock * ClkFeedbackScale) /
 (ClkPreScale * (1 << ClkPostScale))

The first two sets of DClk control registers are configured at reset to generate 25.057MHz (Set 0), and
28.278 MHz (Set 1). The KClk PLL is configured at reset to generate 50MHz. The second pair of DClk
control registers are un-initialised at reset. These frequencies assume that the external reference clock is
14.31818MHz.

5.2.8.2 DClk Programming
DClk (or Dot Clock) is used to control the frequency of the video output from the RAMDAC, and must be set
to a frequency suitable for the display resolution and refresh rate.

The DClk frequency may be locked to one of four sources; the PLL’s, the external reference clock, Video
Stream A (IClk), or Video Stream B (JClk). The source is selected by the RDDClkControl indirect RAMDAC
register.

If DClk is driven by the PLL, then the frequency is controlled by one of four sets of PLL registers: 0, 1, 2 and
3. Only one of them can be selected at a time. The selection is controlled by the VClkCtl register (bits 1 and
0) located at offset 0000.0040h of Memory Region Zero.

5.2.8.3 KClk Programming
The KClk is used to control the operation of the GP Core. It can be locked to one of 2 sources; the KClk
PLL, or PClk. When using the PLL, the frequency is controlled in much the same way as for DClk. However,
only one set of PLL control registers is provided for KClk. It is also possible to drive KClk at half the PClk
frequency.

5.2.8.4 MClk Programming
The MClk is used to control the operation of the memories. It is usually set to the highest frequency
compatible with the timings of the memory parts fitted. It can be sourced from one of 3 sources; PClk, KClk,
or the external MClk. An option is also provided to drive MClk at half the selected clock source.

5.2.8.5 SClk Programming
The SClk is used to control the operation of the graphics core setup units (Host-In, and Delta). It can be
sourced from PClk, KClk, the external SClk, or half these frequencies.

5.3 Video Overlay

The Video Overlay unit provides a second source of video data, which can be displayed in addition to, or
instead of, the conventional framebuffer image from the Video Unit. Like the Video Unit, the Video Overlay
Unit sources its data from the local memory, but rather than passing this data straight through to the
RAMDAC, it extracts the individual pixels, and converts these to RGB888 format before feeding them to the
RAMDAC. The RAMDAC can display this image on top of the framebuffer image from the Video Unit, or use
blending, or color keying to combine the two images.

The Video Overlay Unit can also apply an arbitrary scale factor, to resize the source image to fit the
destination region. When scaling, the unit can optionally apply a bi-linear filter, to reduce the aliasing effects
of pixel replication.

Source data may be RGB8888, RGB4444, RGB5551, RGB332, YUV422, YUV444 or CI8 (8-bit
monochrome) format.

Note: If full-screen Video Overlay is used and no blending is to be used in the RAMDAC (i.e. the
image will completely obscure the framebuffer image), then the Video Unit should be
programmed to disable framebuffer reads (See section 5.1.3). This will reduce the demand on the
memory, and could improve the throughput of the GP Core. Timing information will still be
required from the Video Unit, so it should not simply be disabled.

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-17

5.3.1 Programming The Video Overlay Unit Registers
The Video Overlay Unit registers are located in the Video Unit region, at address offset 3100H. All registers
are direct registers.

5.3.2 Basic Video Overlay Configuration
To correctly display video overlay data, it is necessary to configure both the Video Overlay Unit and the
RAMDAC. The Video Overlay must be configured to indicate the layout of the source image in memory,
together with required scaling, filtering, and buffer-swap synchronization parameters. The RAMDAC must
be configured to reflect the final scaled image dimensions, required screen origin, and blend mode.

5.3.2.1 Setting The Video Overlay Source Image Parameters
The Video Overlay units supports triple-buffering of input frames, by providing three memory base address
registers. The addresses of the three buffers are stored in the VideoOverlayBase0, VideoOverlayBase1,
and VideoOverlayBase2 registers. These addresses are pixel addresses, rather than memory addresses.
For example, if the byte address of the buffer in memory is 40000H, and the pixel format is RGB8888, the
pixel address is :-

 40000H / 4 BytesPerPixel = 10000H

The VideoOverlayBase registers actually contain two fields; Bits 30-31 specify the memory type of the
source buffer. On Permedia4 the MemoryType field should always be 0. If single or double buffering is
used, only one, or two buffer registers need be used.

In addition to setting the base addresses, the VideoOverlayIndex29 register must be set to select the initial
source buffer. This simply involves writing the buffer index (0, 1 or 2) to bits 0-1 of this register. Bit 31 of
this register controls even and odd field selection for interlaced video (see section 5.3.4).

The Flip field of the VideoOverlayMode register should be set to 0. This causes the unit to update its
internal base address when the Video Unit signals a vertical retrace event. all other values for Flip are
reserved on Permedia4.

The BuffserSync field of the VideoOverlayMode register must be set to 0 to specify manual buffer
swapping. All other values for BufferSync are reserved.

VideoOverlayStride specifies the scanline stride, in pixels.

The source image dimensions are stored in the VideoOverlayWidth, and VideoOverlayHeight registers.
These are the dimensions of the visible portion of the image, not necessarily the dimensions of the entire
source buffer. It is possible to display a portion of the source buffer, in which case, the visible image is
smaller than the source buffer.

The VideoOverlayOrigin register controls the start pixel of the source image region, relative to the buffers
base address. This can be used to pan a window around a larger internal buffer.

5.3.2.2 Defining The Video Overlay Color Format
The color format is selected by the YUV and ColorFormat fields of the VideoOverlayMode register. For
RGB formats, set YUV to 0, and then select the required RGB format in the ColorFormat register. For
YUV422 or YUV444, set the YUV field to 1 or 2, respectively. When YUV is selected, the ColorFormat field
is ignored.

The PixelSize field of the VideoOverlayMode register must be set to match the pixel depth of the source
buffer. Set 0 for 8-bit images, 1 for 16-bit images, or 2 for 32 bit images.

If the pixel format is not RGB8888, or one of the YUV formats, the LinearColorExtension bit of the
VideoOverlayMode register is used to control color channel scaling. If this bit is 0, each color channel is
scaled to 8-bits by left shifting, and padding the lower bits with 0. If this bit is 1, then the color channels are
scaled by shifting, and then copying the high order bits into the low order bits.

If the video overlay image is to be indexed through the color palette, then the DirectColor bit of the
RDVideoOverlayControl register should be cleared. If the video overlay image should be displayed
directly, without tranlating thtough the palette, this bit should be set.

If the video overlay image is stored in Patched64 format (See section 5.1.3.4), the PatchMode bit of the
VideoOverlayMode register should be set, otherwise this bit should be cleared.

29 After updating the VideoOverlayIndex, or VideoOverlayOrigin registers, the VideoOverlayUpdate register must be written to
trigger the update. See section 5.3.2.8

Video System� � Permedia4 Programmer’s Guide Volume I

5-18 Proprietary and Confidential �(PEFW�

5.3.2.3 Setting The Video Overlay Destination Region
Once the source image parameters have been assigned in the Video Overlay Unit, the RAMDAC must be
configured to map the output onto the display. Three pieces of information are required for this; The screen
position at which to display the overlay image, the screen position of the bottom right corner of the overlay
image, and finally, video overlay output must be enabled by setting the Enable bit of the RDVideoOverlay
register.

The RDVideoOverlayXStartLow, RDVideoOverlayXStartHigh, RDVideoOverlayYStartLow, and
RDVideoOverlayYStartHigh registers define the X and Y screen coordinates at which to start displaying
the video overlay data.

The RDVideoOverlayXEndLow, RDVideoOverlayXEndHigh, RDVideoOverlayYEndLow, and
RDVideoOverlayYEndHigh registers define the X and Y coordinates at which to stop display overlay data.
In other words, they hold the end X/Y screen location + 1.

Together, the RDVideoOverlayX/YStart and RDVideoOverlayX/YEnd registers indicate the dimensions of
the video overlay region on the display. These dimensions should be used to derive the video overlay
scaling parameters. It is essential that the dimensions used in the RAMDAC match the scaled output
dimensions of the Video Overlay Unit. Any mismatch will result in image skew. See section 5.3.2.9 for
information on setting scaling parameters.

5.3.2.4 Setting The Video Overlay Application Mode
The RAMDAC supports 3 basic modes for applying video overlay data to the framebuffer image; Opaque,
Blend, and Color-key. The required mode is selected by the Mode field of the RDVideoOverlayControl
register.

5.3.2.5 Opaque Video Overlay Regions
The opaque mode of operation causes video overlay pixels to completely obscure the framebuffer. This
mode is selected by assigning the Mode field of the RDVideoOverlayControl register to 2 (Always).

5.3.2.6 Blended Video Overlay Regions
Blending causes the video overlay, and framebuffer images to be blended in 0:1, 1:3, 3:1, or 1:1 ratios. The
ratio selection can either be constant, if BlendSrc in RDVideoOverlay Control is 1 (Register), or per-pixel,
if BlendSrc is 0 (Main). Blending is enabled by setting the Mode field in the RDVideoOverlayControl
register to 3 (Blend).

If constant blending is selected, the blend factor is taken from the RDVideoOverlayBlend register. If per-
pixel blending is enabled, the blend factor for each pixel is taken from the framebuffer alpha channel. In
either mode, the blend factors are stored as 8-bit integers, but currently only the top 2-bits are used to give
a 2-bit value. These values are interpreted as follows :-

Blend Factor Video Overlay
Contribution

Framebuffer
Contribution

�� ��� �����

�� ���� ����

�� ���� ����

�� ����� ���

5.3.2.7 Color-keyed Video Overlay Regions
When color-key mode is selected, a transparency color is defined either for the framebuffer image, making
the video overlay image visible only where the framebuffer pixel is transparent, or for the video overlay
image, making the framebuffer image visible only where the video overlay color is transparent. These two
modes are referred to as MainKey, and OverlayKey respectively.

Color-keying through the framebuffer is enabled by setting the Mode field of the RDVideoOverlayControl
register to 0 (MainKey). In this mode, the test for transparency can either be made against the framebuffer
color channel, or the framebuffer alpha channel. To enable color channel keying, set the Key field in the
RDVideoOverlayControl register to 0 (Color), and set the transparency color in the
RDVideoOverlayKeyR/G/B registers. To enable alpha channel keying, set the Key field to 1 (Alpha), and
set the transparent alpha key in the RDVideoOverlayKeyR register.

Color-keying through the video overlay image is enabled by setting the Mode field of the
RDVideoOverlayControl register to 1 (OverlayKey). There is no alpha-channel in the video overlay image

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-19

sent to the RAMDAC, so the Key field of the RDVideoOverlayControl register is ignored. The transparent
color is set in the RDVideoOverlayKeyR/G/B registers.

When keying from either the framebuffer, or video overlay color channel, the transparent color specified in
the RDVideoOverlayKeyR/G/B registers should be set to the RGB888 color (before LUT translation),
matching the required transparent color. This is determined by the pixel format, and the
LinearColorExtension mode of the corresponding buffer, e.g. if the buffer is in RGB565 pixel format,
LinearColorExtension is disabled, and the required transparent color is full intensity blue, then
RDVideoOverlayKeyB would be set to (0x1F << 3) = 0xF8.

 If LinearColorExtension is enabled, RDVideoOverlayKeyB would be (0x1F << 3) | (0x1F >> 2) = 0xFF.

When keying from the framebuffer alpha channel, the transparent color is a single 8-bit value. In this case,
since the framebuffer value originates from the alpha-channel, no scaling of the color is performed before
the transparency test. Therefore, the value which should be written to RDVideoOverlayKeyR is unaffected
by the LinearColorExtension mode and should not be prescaled to 8-bits.

So for example if the framebuffer format is RGB5551, then a 1-bit transparency key should be written to bit0
of RDVideoOverlayKeyR. If the framebuffer format is RGB4444, then the key is a 4-bit value written to bits
0..3 of RDVideoOverlayKeyR.

5.3.2.8 Triggering Parameter Updates
The Video Overlay Unit implements a register double buffering scheme, in which updates to certain
registers are delayed until the start of the next video frame. This prevents image tearing occuring when a
change is made part way through a frame. For the update to occur, bit 0 of the VideoOverlayUpdate
register must also be set. Once written, the VideoOverlayUpdate bit will remain set, until the update takes
effect at the start of the next frame.

If interrupt triggered updates are required, since the Video Overlay Unit run synchronously to the Video
Unit, the vertical retrace, or programmable scanline interrupt can be used, to signal the start of a new
frame, or a particular scanline. The vertical retrace interrupt will be generated at the start of each frame,
and any previous update will take effect. The Video Overlay Unit can then be setup ready for the next
frame, and VideoOverlayUpdate rewritten, to prime then next update. See section 5.1.4.1 for details of
these interrupts.

The registers which are delayed are VideoOverlayIndex, VideoOverlayZoomXDelta,
VideoOverlayShrinkXDelta,VideoOverlayYDelta and VideoOverlayOrigin.

5.3.2.9 Mirroring Video Overlay Images
Source images can be mirrored in both X and Y, before displaying. This is controlled through the MirrorX,
and MirrorY bits in the VideoOverlayMode register.

5.3.3 Scaling Images Through The Video Overlay Unit
The Video Overlay Unit can perform arbitrary scaling of video data, about both axes, and can optionally
filter subsequent aliasing affects by applying a bilinear filter. It is essential that the scaling parameters are
correctly set, to reflect the relative source and destination region sizes, otherwise image skewing will occur.

Scaling is controlled by specifying X and Y deltas in three Video Overlay registers. The deltas control the
ammount by which the unit advances its input coordinates for each horizontal or vertical output pixel. For
example, if an X delta of 0.5 is specified, then the unit will advance by ½ a source pixel for every output
pixel, resulting in horizontal magnification by a factor of 2. If an X delta of 2 is specified, then the unit will
advance by two source pixels for every output pixel, resulting in a reduction by a factor of 2.

Scaling in X is decomposed into two stages. The first applies a reduction delta (In
VideoOverlayShrinkXDelta) with a value greater than or equal one. This reduces the internal frequency of
the unit during reduction, which would otherwise need to execute faster than the dot clock frequency of the
display. The second stage applies a magnification delta (in VideoOverlayZoomXDelta) with a value less
than or equal to one.

Generally the two X deltas are mutually exclusive; If zooming is required, VideoOverlayZoomXDelta is
used and VideoOverlayShrinkXDelta is set to 1, otherwise VideoOverlayShrinkXDelta is used and
VideoOverlayZoomXDelta is set to 1. In certain applications, such as displaying very large source images,
it may be necessary to apply both stages; Reducing the image first, to reduce the internal clock frequency,
and then magnifying the image to the required size.

Scaling in Y requires just one register; VideoOverlayYDelta.

Video System� � Permedia4 Programmer’s Guide Volume I

5-20 Proprietary and Confidential �(PEFW�

The required deltas for X and Y can be determined from the source and destination region dimensions as
follows :-

XDelta = (Width of source image in memory – 1) / Width of image on display
YDelta = (Height of source image in memory – 1) / Height of image on display

The deltas are stored in unsigned fixed point format, either in 12.12 format (YDelta, and ShrinkXDelta), or
1.12 format (ZoomXDelta). The fixed point register value corresponding to a floating point delta can be
calculated in C as follows :-

Register = ((unsigned long) (Delta * 0x10000)) & mask
Where mask is either 0x0FFFFFF0 (for 12.12 results), or 0x0001FFF0 (for 1.12 results).

Two stages of filtering are provided; Partial and Full. Partial filtering is applied in the horizontal direction
during zooming in X. Full filtering is applied for all scaling, in both axes. Filtering is enabled by setting the
FilerMode field of the VideoOverlayMode to 1 (Full), or 2 (Partial). Setting this field to 0 disables filering.

5.3.4 Interlaced Video With The Video Overlay Unit
There are two approaches to displaying interlaced video. The first involves combining each pair of fields into
a single buffer and displaying this at half the interlaced frequency. The second approach is to retain the
interlaced properties and display each field as soon as it has been geneated.

The first approach requires no special Video Overlay Unit setup but does require more memory since each
buffer is now twice as large. A second drawback to this approach is that it can introduce jitter because the
image is being updated less frequently.

The second approach is usually the best option, and in its simpliest form, also requires no special Video
Overlay configuration. Each video field can be treated as a separate frame, one being written to
BaseAddress0, and the other to BaseAddress1. After each field has been completed, the
VideoOverlayIndex register should be switched to point to the new buffer.

The Video Overlay Unit provides a Bob de-interlacing algorithm30. This allows odd video fields to be offset
slightly in the Y axis, to simulate a true interlaced display. This mode is controlled by the DeInterlace field in
the VideoOverlayMode register. Setting this field to 1 enables Bob de-interlacing. Setting this field to 0
disables de-interlacing. All other values are reserved.

When using Bob de-interlacing, the index of the current field should be written to bit 31 of the
VideoOverlayIndex register. This is used to enable, or disable the Y axis offset. For even fields, set this bit
to 0. For odd field set this field to 1.

The odd field Y Offset should be written to the VideoOverlayFieldOffset register. This register is in
unsigned 12.12 fixed point format. The fixed point value corresponding to a floating point offset can be
calculated in C as follows :-

 VideoOverlayFieldOffset = ((unsigned long) (Offset * 0x10000)) & 0x0FFFFFF0
Normally, the odd fields are offset by VideoOverlayFieldOffset when Bob de-interlacing is enabled. Setting
the FieldPolarity bit of the VideoOverlayMode regoster reverses this, so that the even fields are offset
instead.

5.3.5 Video Overlay Unit Fifo Control
The Video Overlay Unit stores image return data from the memory controller in two 16 entry fifos. To ensure
efficient use of memory, read requests will usually be low priority requests, causing several consecutive
requests to queue up in the memory controller, and then complete in a burst. The priority of the requests is
controlled by the number of returned data items in the video fifos. If there is not enough data queued up in
either fifo, the Video Overlay Unit will assert high priority to the memory controller. The thresholds for high
and low priority are controlled by the VideoOverlayFifoControl register. If the number of spaces in either
fifo is greater than or equal to the High field of this register, the Video Overlay Unit asserts high priority. If
the number of spaces in both fifos is less than or equal to Low, high priority will be deasserted.

If the memory system fails to supply the Video Overlay Unit fast enough to prevent image loss, the Video
Overlay Unit will set the FifoUnderflow bit of the VideoOverlayStatus register. Once set, this bit will remain
set, until it is cleared by writing VideoOverlayStatus with this bit set to 1. This bit can be monitored, to
determine whether the fifo threshold settings are sufficient to prevent underflow.

Note: It will not always be possible to prevent underflow conditions, even with very stringent threshold
settings. If an underflow problem persists, with tight thresholds, it probably indicates that the
source image is too large for the available memory bandwith. The resolution of the source image
should either be reduced, or alternatively, it may be possible to read the image if it is reduced

30 But see Permedia4 Errata and Alerts PEREN006

Permedia4 Programmer’s Guide Volume I Video System

�(PEFW Proprietary and Confidential 5-21

within the video overlay unit, and then magnified again, by using both
VideoOverlayShrinkXDelta, and VideoOverlayZoomXDelta simultaneously.

