Permedia3’

Programmer's Guide - Volume 111

PROPRIETARY AND CONFIDENTIAL
INFORMATION

= {» 1

SD/:)s

Permedia3’

Programmer's Guide - Volume 111

PROPRIETARY AND CONFIDENTIAL
INFORMATION

Issue 1

Video Unit and RAMDAC

Proprietary and Confidential

GLINT R5 Reference Guide Volume |

3Dlabs

Proprietary Notice

The material in this document is the intellectual property of 3D/z4s®. It is provided solely
for information. You may not reproduce this document in whole or in part by any means.
While every care has been taken in the preparation of this document, 3D/bs accepts no
liability for any consequences of its use. Our products are under continual improvement
and we reserve the right to change their specification without notice. 3D/z45 may not
produce printed versions of each issue of this document. The latest version will be
available from the 3D/4s web site.

3D/./s products and technology are protected by a number of worldwide patents.
Unlicensed use of any information contained herein may infringe one or more of these

patents and may violate the appropriate patent laws and conventions.
3D/./s ® is the worldwide trading name of 3D/44s Inc. Ltd.

3D/a)s, GLINT, GLINT Gamma, PERMEDIA, OXYGEN AND POWERTHREADS are trademarks or
registered trademarks of 3D/z4s Ltd., 3D/abs Inc. Ltd or 3D/abs Inc.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of
Microsoft Corp. in the United States and/or other countries. OpenGL is a registered
trademark of Silicon Graphics, Inc. All other trademarks are acknowledged and

recognized.

© Copyright 3D/4s Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com
Web: http://www.3dlabs.com

3D/.s Ltd.
Meadlake Place
Thorpe Lea Road, Egham
Surrey, TW20 8HE
United Kingdom
Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699
3D/s6s GmbH
Breckenheimer Weg 29
65205 Wiesbaden
Deutschland
Tel: +49 6122 916 778
Fax: +49 6122 919 646

3Dlabs

Proprietary and Confidential

3D/abs K K.
Shiroyama JT Mori Bldg 16F
40301 Toranomon
Minato-ku, Tokyo, 105, Japan
Tel: +81-3-5403-4653
Fax: +91-3-5403-4646

3D/)s Inc.

480 Potrero Avenue
Sunnyvale, CA 94086,
United States
Tel: +1 (408) 530-4700
Fax: +1 (408) 530-4701

Video Unit and RAMDAC GLINT R5 Reference Guide Volume |

Change History

Document | Issue | Date ‘ Change
157.4.2 1 03 Aug 2001

Split from volume 2 for publishing rcasons.

iv Proprietary and Confidential 3Dlabs

Table of Contents

a

FOG, ANTIALIAS AND ALPHA TEST oottt ee e snnbeneee s 9
11 FOQG UL oot 9
1.1.1 Fog Index Caltlationccccviiiiiiiimiiiiniiiissiaiiss et 10
1.1.2 Fog Table11
1.1.3 Fog Application.... 11
1.1.4 FOGVIOGE FOGISIE ..ottt 13
1.1.5 FOQ EXQIPLE ..ottt s 14
1.2 ANHABASIIG ovreoeeeeee et e 15
1.2.1 Antialias APPLICATIONcoccviiiiicisiieiisieis s 15
1.2.2 Polygon Antialiasingcccccooiiiiiiiiiiiiiiiiiiiiiiic et 15
1.2.3 RUGISIETS. oottt s 16
1.2.4 ANL1alias EXAMPIEooccviiiiiiriiiiciiisiises s 17
1.3 AIPha TeSt U woouieieieee e 17
1.3.1 J Y 17
1.3.2 REGISTCIS.c.iiviiiiiiiii it 18
1.3.3 ALPha Test EXAMPIEcccoiiiviiriiiiicisiiiicei s 18
FRAMEBUFFER READ/WRITEcoiiiiiiiitiie ettt ettt e nnnee e 21
2.1.1 Standard Framebuffer Read OPerarionoccccviveiirsivniiinisieniiieiisiinisienisieiissiaveiinisinesniaiens 21
2.1.2 Framebuffer Read Span OPerarions................ccccviuriimiieriaieiirisiaieiinisieniiseiaseiinisiinsenstieniaveiinsnnsinainn 22
2.1.3 Merge-copy SPam OPErarions.............cccecivecieiiisriismismisiiisnisiis st 22
ALPHA BLENDING ..ottt e e e e s e e e e e e e e e 25
3.1 IOTEOAUCHOMN wtireeteiiece ettt ettt sttt sttt sttt 25
3.1.1 AlPha BLend FUNCHIONSc..ccoiiiiiiiieiiiiiiaiiiiait ittt 25
3.1.2 ALPha BIRd ReisTers..........ccovciviiiiicisiiosinisissis ittt 25
3.2 Soutrce Blending FUNCHONS ..o 26
3.2.1 OpenGL Alpha BINAINGcccviiviiiiiiiiiiiioieiiiete sttt 26
3.3 Destination Blending FUNCHONScovuiiiiiiciicccccc s 27
3.3.1 QuickDraw 3D Alpha BLRAIngcc.cccovviivriaiiiiiniaiiiisiiiissesaa st 28
3.3.2 I FOPMAIIING ...ccoeeiie e et et et ettt 28
3.3.3 REGISIEFS...oivisiiiii e 28
6.1.2 CHIOMA TETING 1ottt 32
3.3.4 Alpha BIend EXGmple...........c..ccoiiiiciviiiininiiiiiiiiieii sttt 35
COLOR FORMAT AND LOGICAL OPS....cooiiieiiiieiit ettt 37

3Dlabs Proprietary and Confidential v

Video Unit and RAMDAC GLINT R5 Reference Guide Volume |

6.2 Color and Alpha Formats.. 237

4.1.1 COLOF DIFIDEITNG oottt 40
4.1.2 RUGISIENS oot 41
4.1.3 Dither EXAMPLEcoc.coviiviiiiiisiiiii s 42
4.1.4 3:3:2 Color Formar EXamplecccoiiviiniiimiiiiiisiiiissiaiiis ettt 43
4.1.5 8:8:8:8 Color Formar EXamplecccocuiviimsieniiieiiiiiiieiiiietie sttt 43
4.1.6 Color Index Formar EXAMPIE...........cocccivriiriiiiiiiiiiiiiisiesisst sttt 43
4.2 Lo@ICal OP UL v 43
4.2.1 High Speed Flar Shaded Rendering.............ccccoouiimiimiviiniiiisniiiiiissisisisstaie e 44
4.2.2 LOGECAL OPEPAIIONS ...ttt 44
4.2.3 ROISHEPS ..ot ettt 44
4.2.4 XOR EXAMPLE ...ttt 46
4.2.5 Logical Op and Software Writemask EXGMPLEcocccvivivriiiviieiirisieniiisiiieniaieiirintieniaieiarniaveiinn 46
5 FRAMEBUFFER WRITEMASKScoii ittt ettt et e e s ianaea e e e e e a7
5.1.1 SOFRUAEE WHIHEMASES ...ttt ettt 47
5.1.2 Hardware WrIemasks............c.occcicviaiinaiinieisnesnaie ettt ettt 47
5.1.3 ROISHEPS ..ot et 47
5.14 Softrware Writemask EXGMPLE.............c.ccocveviiviiiniiieiiiiistieisieet ettt 47
5.1.5 Hardware Writemask EXGMPLEcccocccviimiiiimiiiiiiiiiiiiiiiiiis ettt 48
B HOST OUT UNIT ittt ettt e e e e st e e e e e s ssab b e e e e s s e sbnbe e e eeesenbbbeeaeesannnes 6-1
6.1 Filtering
6.1.1 Filter Mode EXAMPIe...........c.cccoecvrioniaiiiimiiiiaisiiiiai sttt ittt 6-2
6.1.2 SEAtS1IC OPEFALIONSc.vie ittt 6-2
6.1.3 SYRCBIORIZAIION ..ottt ettt 6-3
6.1.4 RUGISIENS oottt et 6-3
6.1.5 PRCRING EXAMPLE ...ttt 6-6
6.1.6 SYRC IRIErTUpt EXAMPLE.......coviviiiiciiiiiciece e 6-6
7 INITIALIZATION. .ottt et e s b e e e e s s et e e e e e st e et e s e s saabeeeaeenas
7.1 Initializing Permedia3
7.1.1 Reset and initialiS@tion.ccccciiiiiiiiiiiiiiiiiiiiiiiiiii et 7-1
6.3 System INItIalIZAtiON....cooiiiiiiciciciccccc s 7-2
7.1.2 PO T DS v vt ettt et e ettt et ettt et et et e as ettt ettt ettt et nrean 7-2
7.1.3 Memory CONfIGUIAIION.ouvviiisiiiriieiiieite sttt 7-2
7.1.4 Internal Video Timing REGISIErSc.ccoivciviiniiriiisisisisisee ottt 7-3

vi Proprietary and Confidential 3Dlabs

7.1.5 Framebuffer Depth..........cccooociiiiiiiiiiiiiiiiiiiiiii ittt 7-3

7.1.6 SCPeen WAdth......c.coviciiiciiiciiiicic et 7-3
7.1.7 Sereen CLPPING REGIONc.cccvviiiioieiiriareciieinises sttt sttt 7-3
7.1.8 LocalbufferError! Bookmark not defined. and FramebufferError! Bookmark not defined. Configuration 7-4
7.1.9 HO0SE Ottt URZE..oiioviiiiiiiii it 7-5

7.1.10 Disabling Specialized MOdES............ccc...coccirivisiiiimiesiaiiiiiineieisne et 7-5

7.2 WiINAOW TNIHAIZATION ceveviiviieiietietietee ettt ettt ettt ettt st eete et st ete et eate e et estesseseesessenserasesensenseneas 7-5
7.2.1 Color Format..........ccccovviiiviiiiiivainin, PO TURUUROPRPRII 7-5

7.2.2 Sesting the Window Address and Origin..... s 7-6
7.2.3 W PEEEMIASIES ..ottt ettt 7-6
7.2.4 ERGDIING WHILING. c...ooiiv ettt 7-6
7.3 Application INitialiZAtion......ciuceieiiieicicic e 7-7
8 PERFORMANCE TIPS ...ttt ettt ettt ettt ettt ettt e e nibe e e e beeeean 8-1
8.1 BLOCK WHIEES w.eetetiiirtreetstste sttt ettt et ettt ettt ettt et b bbb s erencreens 8-1
6.4 Fast double buffering in 2 WINAOWcooviiiiiiiiiciiccccc e 8-2
8.2 Disable FB Reads per pixel if 10t requited.......ccoouriririeiniiciiiiicicnciccccece s 8-2
6.5 Improving PCI bus bandwidth for Programmed I/O and DMA.......ccccoovviuneininninniinnians 8-2
6.6 PCI burst transfers under Programmed I/O ..o 8-3
6.7 Using PCI Disconnect Under Programmed I/ O ..o 8-3
6.8 Using Bus Mastership (DA ..o 8-3
6.9 Disabling UNits NOT I USE w.evurvuruererieieieeiieieecie ettt e 8-3
6.10 Clearing the localbuffer & framebuffer ... 8-4
6.11 Use of the Framebuffer (or Localbuffer) Bypassccccccoviviinininnciicicccccccccciccs 8-4
6.12 Loading Registers in Unit OLder ..o 8-4
6.13 Avoiding Unnecessary Register UPdatescoeveiiieiiiiiiiiciicceccecc s 8-4
6.14 Hardware and Software Context DUmMPS.....c.oveioieieiiiie s 8-4
6.15 Use the Memory Scratchpad RegISters ..o s 8-5
6.16 MiSCEllaneous TIPS ... 8-5
O APPENDICES ...ttt et e et e ettt et e ettt e e e et et e e e tae e e bt e e e nbaeearaeeeeereeeenn 9-1
6.17 Pseudocode DEfINIHONSccueveviiiriieieieirieieis ettt sttt ettt 9-1
9.1 Interpolation CalCulationcouiuiuiuiiiiiec e e 9-2
9.1.1 Color Gradient INtErpolationccccccccciivniiiiiiiiiiiiiiiiiiiiscei sttt 9-2
9.1.2 Register Sex Up for Color INterpolarionc.cooovivraiiiiiraiisisisiioieisoeiic sttt 9-3
9.1.3 Calculating Deprh Gradient Valles............cccoovviaiiiiniaiiiisiiiiissiioes et 9-4

3Dlabs Proprietary and Confidential vii

Video Unit and RAMDAC GLINT R5 Reference Guide Volume |

9.2 Appendix F. Accurate Rendering
0.3 GIOSSALY woruiiee e e 15

viii Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume I Fog, Antialias and Alpha Test

Fog, Antialias and Alpha Test

1.1 Fog Unit

The fog unit is used to blend the incoming fragment'’s color or Z (generated by the color
DDA unit, and potentially modified by the texture unit) with a predefined fog color. Fogging
can be used to simulate atmospheric fogging, and also to depth cue images.

Fog application has two stages:
1. derive the fog index for a fragment;
2. apply the fogging cffect.

&

The fog index is a value which is interpolated over the primitive using a DDA in the same
way color and depth are interpolated. The fogging effect is applied to each fragment using
one of the equations described below.

Note: Although fog values are linearly interpolated over a primitive they can be
calculated on the host using either a linear fog function (typically for simple
fog effects and depth cueing) or a more complex function e.g. an exponential
function to model atmospheric attenuation..

3Dlabs Proprietary and Confidential 9

Video Unit and RAMDAC GLINT R5 Reference Guide Volume |

111

Fog Index Calculation

The fog index can be derived from specified fog values in FStart, dFdX and dFdYDom, or
from the Depth DDA values. This option is selected with the UseZ bit in the FogMode
register.

The fog DDA is used to interpolate the fog index (f) across a primitive. The mechanics are
similar to those of the other DDA units, as the diagram below illustrates:

dF dyDom

T Subordinate Edges
et

Dominant Edge

Ry

Figure 1-1 Fog Interpolation Over A Triangle

10

where:
¢ dFdX = [Fog gradient in the X direction.

. dFdyDom = Fog gradicent along the dominant edge of a primitive.

Note: For fogged lines the dFdx delta is not required.

The fog interpolation values (e.g. Fstart) are specified as 32bit fixed point numbers - the
format is 2's complement with 10 bits integer and 22 bits fraction. However the derived fog
index is an 8-bit fixed point number (0 bits integer, 8 bit fraction).

The DDA only exports a relatively narrow range (+511 to -512) compared to the range of
depths so the software needs to be careful when setting up the DDA. There are four
cases:

e Ifall the vertices are in the near range then the DDA should be set up to output 1.0 with a delta of

0.
. I all the vertices are in the far range then the IDIDA should be set up to output 0.0 with a delta of
0.
. If all the vertices are within the DDA's range then the DDA's parameters are set up as normal.
. Onc or more of the vertices are out of the DIDA's range and must be clamped before the IDIDA's

parameters are set up. (This will only occur on very large polygons which extend from near the

eye point into the far distance.)

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume I Fog, Antialias and Alpha Test

6.1.1.1

1.1.2

113

1.1.31

3Dlabs

The result of clamping the input values to the DDA will be to change the effective position
and width of the fog band (i.e. middle range), but this is unlikely to be noticeable. If itis
noticeable then tessellating the polygon will solve the problem.

Z-controlled Fog

The fog value (direct or mapped via the table) can be derived from the interpolated Z
value. If the UseZ bit is set in FogMode then the fog DDA is loaded by the Z DDA
parameters and tracks the Z value over the primitive. The 2's complement 32 bit Z value
from the DDA output is mapped to the 8 bit fog index as follows:

. Clamp 7 from the DDA so it is greater than or equal to 0.

* Addin the ZFogBias and clamp again to be greater than or equal to 0.

. Shift right by /Shift amount.

* Clamp against 255 so the result is less than or equal to 255. ‘This is the fog index.

The bias sets a Z value below which no blending occurs. The scale value selects the

range (as a power of 2) beyond which the fog color is used (because the fog index is set to
255).

Fog Table

Initially, the fog values populate a span register and an increment register tracks progress
along the Dominant edge. Both f-controlled and Z-controlled fog produce the 8-bit index
values which can be directly applied to interpolation or stored as a table for use in
producing more complex (non-linear) fogs with host intervention. The Fog Table is
selected using theTable bit in the FogMode register.

The fog table is organised as 256 x 8 so the 8 bit input fog index is mapped to an 8 bit
output fog index. The fog table is held in the FogTable(0) to FogTable(63) registers and
each register loads 4 entries at a time. FogTableO, byte 0 loads the mapping for fog index
0, byte 1 for fog index 1, etc..

Fog Application
Once the fog indices are calculated they are applied to interpolate the fog color and the

current color, the controlling equations depending on whether the colors are represented in
RGBA ro Cl mode. The mode selection is made with the ColorMode bit in FogMode.

RGBA Fogging Equation

Fogging is applied differently depending on the color mode. For RGBA mode the fogging
equation is

Vi = Lerp (F Crgp-Crgee 71)
Vﬂ = Cﬂ

where:

* V= outgoing color

. HC = fog color

. C = incoming fragment color
* [T = fogindex

Proprietary and Confidential 11

Video Unit and RAMDAC

GLINT R5 Reference Guide Volume |

The equation is applied to the color components red, green and blue; alpha is not

modified.

The diagram below shows how the fogging would typically affect fragments. Initially no
fogging occurs, f = 1.0, then a region of linear combination of the fragment color and fog
color occurs 0.0 < f < 1.0, followed by a region of constant fog color, f <0.0.

DDA output

4

Max F1

1.0 :

DDA adder output ,

FI after ¢lamping

DDA steps

Min FI

1.1.3.2 CI Fogging Equation
In Cl mode the equation is:

12 Proprietary and Confidential

3Dlabs

Permedia3 Programmer’s Guide Volume I Fog, Antialias and Alpha Test

Note: The Cl value is held only in the red channel for later use, but doing the same
equation on all colour channels keeps the control simpler. Clamping is
needed as the result can overflow the 8 bit colour component range.

1.1.4 FogMode register
The FogMode register is used to enable and disable fogging (qualified by the fog
application bit in the Render command register).

FogMode

FogModeAnd

FogModeOr

Name Type Offset Format

FogMode Fog 0x8690 Bitfield

FogModeAnd Hog 0xAC10 Bitficld Logic Mask

TFogModeOr Fog 0xAC18 Bitfield Logic Mask

Control registers

Bits Name Read | Write | Reset | Description

0 Lnable O 1 X This bit, when set, and qualified by the [Foglinable bit
in the Render command causes the current fragment
color to be modified by the fog cocefficient and
background color.

1 ColorMode g J X This bit selects the color mode. The two options are:
0 =RGB. 'The RGB fog equation is used.

1 = CL. The Color Index fog equation is used.

2 Table | J X This bit, when set, causes the I'og Index to be mapped
via the Fog/l'able before it controls the blending
between the fragment's color and the fog color,
otherwise the DDA value is used directly.

3 Usc”. O [X "I'his bit, when sct, causes the DDA to be loaded with
the Z DDA values instead of the ['og DDA values. It
also adjusts the clamping of the DDA output.

4.8 ZShift g 1 X This field specifies the amount the (2 from DDA +
zBias) is right shifted by before it is clamped against
255 and the bottom 8 bits used as the fog index. This
should also take into account the number of depth
bits there are.

3Dlabs Proprietary and Confidential 13

Video Unit and RAMDAC GLINT R5 Reference Guide Volume |

9 InvertI'T O N X This bit, when set, inverts the fog index before it is
used to interpolates between the fragment's color and
the fog color. ‘T'his is usually 0 when fog values are
used and 1 for Z values. ['og values are set up so they
decrease with increasing depth and obviously / values

increase with increasing depth.

10...31 Unused 0 0 X

Figure 1-2 FogMode Register

In addition to the ColorMode, Table and UseZ bits, FogMode allows inversion of the fog
index before interpolation using InvertFl.

1.1.5 Fog Example
A Gouraud shaded, fogged RGBA trapezoid, with the fog color set to white:

/1 Enable the color DDA unit in Gouraud shading
/1 node

col or DDAMbde. Uni t Enabl e = Per nedi a3_ENABLE

col or DDAMbde. Shade = Per nedi a3_GOURAUD_SHADE MODE
Col or DDAMbde(col or DDAMbde)

/1 Enabl e the Fog unit

f ogMbde. FogEnabl e = Per nedi a3_TRUE

f ogMbde. Col or Mode = Per nedi a3_RGBA_MODE
FogMbde(f oghvbde)

/1 Set the fog color to white

FogCol or (OxFFFFFFFF)

/1 Load the color start values and deltas for
/1 dom nant edge and the body of the trapezoid

Rstart() // Set-up the red conponent start val ue
dRdX() // Set-up the red conponent increnents
dRdYDon()

Gstart() // Set-up the green conponent start val ue
dGdX() // Set-up the green conponent increnents
dGdYDon()

Bstart() // Set-up the blue conponent start val ue
dBdX() // Set-up the blue conmponent increnents

dBYDon()

/1 Load the start value and delta for dom nant edge
/1 and the body of the trapezoid

/1 Note that the fog deltas are calculated in the
/1 same way as the color deltas

FStart() // Set-up the fog conponent start val ue
dFdX() // Set-up the fog conponent increnents
dFdYDon()

/1 Wen issuing a Render command the FogEnabl e bit
/1 should be set in addition to the fog unit being

14 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume I Fog, Antialias and Alpha Test

/'l enabl ed:
/'l render. FogEnabl e = PERVEDI A3_TRUE

1.2

121

1.2.2

3Dlabs

Antialiasing

Antialias application controls the way the coverage value generated by the rasterizer
combines with the color generated in the color DDA units. The application depends on the
color mode - RGBA or Color Index (Cl).

Antialias Application

When antialiasing is enabled by setting the AntialiasMode Enable bit and the Render
register's CoverageEnable bit, the fragment's color and alpha is weighted by the
percentage area of the pixel covered by the fragment. The coverage weighting is
determined by the Rasteriser and varies from 0 to 100% "saturation".

If antialiasing is not enabled the fragment is forwarded for alpha testing.

The mode (RGBA or Cl) is set using the ColorMode bit in the AntialiasMode register. In
RGBA mode the color value is multiplied by the coverage value calculated in the rasterizer
(its range is 0% to 100%). The RGB values remain unchanged unless the ScaleColor bit is
also set. Color scaling is not required by OGL and may reduce performance.

In Cl mode the coverage value is placed in the lower 4 bits of the color field. The Color
Look Up Table is assumed to be set up such that each color has 16 intensities associated
with it, one per coverage entry.

Polygon Antialiasing

A number of issues should be considered when using Permedia3 to render antialiased
polygons. Depth buffering cannot be used with Permedia3 antialiasing. This is because the
order the fragments are combined in is critical in producing the correct final color. Polygons
must therefore be depth sorted, and rendered front to back, using the alpha blend modes:
SourceAlphaSaturate for the source blend function and One for the destination blend
function. In this way the alpha component of a fragment represents the percentage pixel
coverage, and the blend function accumulates coverage until the value in the alpha buffer
equals one, at which point no further contributions can be made to a pixel.

Although this technique works well in many cases, it is an approximation. Consider the
case below which shows three polygons of equal depth which intersect a single pixel. In
this case there would ideally be a contribution from each of the polygons. However, if the
rendering order is polygon A followed by polygon B, each of which contributes
approximately 50% pixel coverage, then polygon C will make no contribution to the pixel as
the alpha value is saturated (50%+50%=100%).

Proprietary and Confidential 15

Video Unit and RAMDAC GLINT R5 Reference Guide Volume |

Fixel

Figure 1-3 Polygon Antialiasing

When antialiasing general scenes with no restrictions on rendering order, the accumulation
buffer is the preferred choice. This is indirectly supported on Permedia3 via image
uploading and downloading, with the accumulation buffer residing on the host.

When antialiasing, interpolated parameters which are sampled within a fragment (color,
fog and texture), sometimes are not representative of a continuous sampling of a surface
so care should be taken when rendering smooth shaded antialiased primitives. This
problem does not occur in aliased rendering, as the sample point is consistently at the
center of a pixel.

See The OpenGL Programming Guide for more details of antialiasing.

1.2.3 Registers
The AntialiasMode register provides the enables described earlier.
Type Offset Format
AntialiasMode Alpha l'est 0Ox 8808 Bitficld
AntialiasModeAnd Alpha l'est Ox ABHO Bitficld Logic Mask
AntialiasModeOr Alpha Test 0x ABI'8 Bitfield Logic Mask
Control registers
Bits Name Read |Write |Reset |Description
0 Lnable 0 1] X When set causes the fragment's alpha value to be
scaled under control of the remaining bits in this
register and the coverage value. When this bit is clear
the fragment's alpha value is not changed.
0 = Disable
16 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume I Fog, Antialias and Alpha Test

1 = Enable
1 Color Mode 0 [X "I'his bit defines the color format the fragment's color
is in:
0 = RGBA
1=CI
2 Scale Color 0] X This bit, when set allows the coverage value to scale

the RGB components as well as the alpha component.
When this bit is reset only the alpha component is
scaled. This allows antialiasing of pre multiplied

images used in compositing.

Unuscd 0 0 X

Figure 1-4 AntialiasMode Register

For the coverage application to take place the enable in the AntialiasMode register must
be qualified by the CoverageEnable bit in the Render command register.

1.2.4 Antialias Example

Enable antialiasing for a RGBA primitive:

/1 Set AA application for RGBA primtive

anti al i asMbde. Anti al i asEnabl e = PERMEDI A3_TRUE

anti al i asMbde. Col or Mode = PERMVEDI A3_TRUE

Anti al i asMbde(anti al i ashMbde)

/1 Set the blend node to an appropriate value if
blending is required. Not shown.

When issuing a Render command the CoverageEnabl e
bit should be set in addition to the antialias
unit bei ng enabl ed:

render . Cover ageEnabl e = PERMEDI A3_TRU

1.3 Alpha Test Unit

The alpha test compares a fragment’s alpha value with a reference value. Alpha testing is
not available in color index (Cl) mode.

~————
~————

1.3.1 Alpha Test

The alpha test conditionally rejects a fragment based on the comparison between a
reference alpha value and one associated with the fragment, the available tests are:

Mode Comparison Function Mode Comparison ['unction
0 Never 4 Greater
1 I.css 5 Not Hqual
2 Lqual 6 Greater Than or Equal
3 I.ess 'I'han or Hqual 7 Always

Table 1.1 Alpha Test Comparison Tests

3Dlabs Proprietary and Confidential 17

Video Unit and RAMDAC GLINT R5 Reference Guide Volume |

The sense of the test is such that if the comparison mode is set to Less and the reference
value is set to 0x80, then fragments with alpha values between 0x0 and 0x7F will pass the
test and fragments with alpha values between 0x80 and OxFF will fail the test and be
rejected.

1.3.2 Registers
The AlphaTestMode register controls the alpha test:

Name Type Offset Format
AlphaTestMode AlphaBlend 0x 8800 Bittield
Alpha'l'estModeAnd AlphaBlend 0x ABFO Bitticld Logic Mask
AlphaTestModeOr AlphaBlend Ox ABI'8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
0 Lnable 0 N X When set causes the fragment's alpha value to be

tested under control of the remaining bits in this
register. If the alpha test fails then the fragment is
discarded. When this bit is clear the fragment alway
passcs the alpha test.

0 = Disable 1 = Enable
1...3 Compare O [X This field defines the unsigned comparison function
to use. The options are:
0 = Never 1 = Less
2 = Lqual 3 = Less [lqual
4 = Greater 5 = Not Equal

6 = Greater iqual 7 = Always
The comparison order is as follows:
result = fragment, Alpha Compare Function,

reference, Alpha.

4...11 Reference O [X This field holds the 8 bit reference alpha value used in

the comparison.

12...31 Unused 0 0 X

Figure 1-5 AlphaTestMode Register

1.3.3 Alpha Test Example

Set the alpha test mode to be LESS and the reference value to be 0x80:
/1 Enable unit and set nodes
al phaMbde. Uni t Enabl e = Per nmedi a3_ENABLE
al phaMbde. Conpare = Pernmedi a3_ALPHA COWARE_MODE_LESS
al phaMbde. Ref erence = 0x80
Al phaMbde(al phaMode) /1 Load register

18 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume I Fog, Antialias and Alpha Test

/1l Render primtives

3Dlabs Proprietary and Confidential 19

Permedia3 Programmer’s Guide Volume Il

Framebuffer Read/Write

7

Framebuffer Read/Write

Before rendering can take place Permedia3 must be configured to perform the correct
framebuffer read and write operations. Framebuffer read and write modes affect the
operation of alpha blending, logic ops, writemasks, image upload/download operations and
the updating of pixels in the framebuffer.

The framebuffer read and write units are set up in different ways depending on whether
Span Operations are being used. Normally, span operations are used for 2D rendering in
order to maximize memory bandwidth. Span operations allow multiple pixels to be read
and processed in parallel. The following sections discuss the use of the framebuffer read
and write units for both standard operation and span operations.

2.11 Standard Framebuffer Read Operation

The FBSourceReadMode and FBDestReadMode registers allows Permedia3 to be

configured to make 0, 1 or 2 reads of the framebuffer. The following are the most common

modes of access to the framebuffer:

+ Rendering operations with no logical operations, software writemasking or alpha
blending. In this case no read of the framebuffer is required and framebuffer writes
should be enabled.

+ Rendering operations which use logical ops, software writemasks or alpha blending. In
these cases the destination pixel must be read from the framebuffer and framebuffer
writes must be enabled. (Here set-up varies depending what functionality is required. If
alpha blending, logic ops or software writemasks are used the framebuffer is read twice
i.e. both the source and the destination. When alpha blending and logic ops are not
needed, and hardware writemasks are used (or when the software writemask allows
updating of all bits in a pixel) only one read is required.)

« Image upload. This requires reading of the destination framebuffer pixels to be enabled
and framebuffer writes to be disabled.

« Image download. This case requires no framebuffer reads (as long as software
writemasking, alpha blending and logic ops are disabled) but writes must be enabled.

The data read from the framebuffer may be tagged either FBDefault (data which may be

written back into the framebuffer or used in some manner to modify the fragment color) or

FBColor (data which will be uploaded to the host). Table 2.2 Framebuffer Read/Write

Modes summarizes the framebuffer read/write control for common rendering operations:

ReadSource |Read Writes Read Data |Rendering Operation
Destination Type
Disabled Disabled Fnabled - Rendering with no logical operations, software
writemasks or blending.
3Dlabs Proprietary and Confidential 21

Video Unit and RAMDAC GLINT R5 Reference Guide Volume |

Disabled Disabled Lnabled - Image download.

Disabled Hnabled Disabled FBColor Image upload.

Lnabled Disabled Lnabled I'BDefault |Image copy with hardware writemasks and no
alpha blending orlogical operations

Disabled Fnabled Fnabled EBDecfault | Rendering using logical operations, software
writemasks or blending.

Knabled Knabled KEnabled FEBDecfault |Image copy with software writemasks, alpha
blending or logic ops.

Table 2.2 Framebuffer Read/Write Modes

2.1.2 Framebuffer Read Span Operations

2.1.3

22

As well as performing standard, single pixel at a time, read operations the framebuffer read
unit can be used to process span operations. The simplest type of operation is where a
span mask is presented to the read unit and the ReadSource bit is enabled. This will cause
the unit to read a complete span of pixels from the framebuffer in a 64-bit packed format.
The data is always read as a set of 64 bit words. This allows maximum use of both
memory and core bandwidth since multiple pixels are being processed.

Since a span mask may not necessarily have all its bits set to 1 (i.e. only a subset of pixels
in the span need to be processed), it would be wasteful of memory bandwidth to always
read the complete span. For example, at the right hand edge of a rectangle which is being
copied, we want the read unit to only read up to the rightmost pixel but not beyond.
Whether a 64 bit word is read depends on the corresponding bit values in the span mask.
Since each bit in the mask represents a pixel, either 1, 2 or 4 bits will represent a 32 bit
word for the depths 32, 16 and 8 bits respectively. If the group of bits representing a 32 bit
word is non-zero then the corresponding 32 bits will be read from the framebuffer. Thus:
. at 32 bits per pixel, a single bit in the span mask corresponds to 32 bits in the framcebuffer and 32
bit words will be read only at those locations where the corresponding bit in the span mask is a 1.
. at 16 bits per pixel, 2 bits in the span mask represent 32 bits in the framebuffer. A 32 bit word will
be read only at those locations where the corresponding 2 span bits form a non-zero value.
e at 8 bits per pixel, a 32 bit word will be read only at those locations where the corresponding 4
span bits form a non-zcro valuc.
The number of 32bit words read from the framebuffer is thus a function of the span mask
and the number of bits per pixel, though this is not normally of interest to the programmer.
However, the number of 32bit words becomes important for span operations where the
data is downloaded from the host. For example, an image download operation using a

span operation only requires those 32 bit words which contain required pixel data to be
downloaded. Some examples of this are given later.

Merge-copy Span Operations

To understand the way in which the read units works we will examine the way in which a
span operation with a logic op works. In particular we consider the case where both
ReadSource and ReadDestination bits are set in the FBReadMode register. For example,
this would be the case when copying data within the framebuffer with an xor logic op.

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

3Dlabs

Framebuffer Read/Write

To perform this operation, the framebuffer read unit must read both a source span of data
and a destination span of data. These spans must then be merged so that the data
presented to the logic op unit consists of source and destination pairs. Since the logic op
unit can combine up to 32 bits at a time, the data can be presented in the form of packed
32 bit words (at 8 bits per pixel this means that the logic op unit can work on 4 pixels at a
time).

It would be wasteful of memory bandwidth to read 32 bits from the source followed by 32
bits from the destination. This would result in too many memory page breaks. So the read
unit reads a complete source span and stores it internally in a data area known as the
Pattern RAM. Then the destination span is read. As the destination span is read, it is
merged with the saved source span data so that the data which the logical op unit sees
comprises corresponding sections of source and destination data. The logic op unit can
then combine this data and present a series of 32 bit results to the framebuffer write unit.

The Pattern RAM is so named because it can be used for pattern filling operations as well
as a temporary store for source pixel data..

Proprietary and Confidential 23

Permedia3 Programmer’s Guide Volume Il

Alpha Blending

8

Alpha Blending

3.1

311

3.1.2

3Dlabs

In this chapter we discuss alpha blending. The alpha blend unit performs opacity
calculations on the color and alpha components of pixel fragments according to functions
defined in the color mode and alpha mode alpha blend registers.

In this section we discuss:

. Source Blending Functions

* Destination Blending I'unctions

* Color Component Alpha Blending

. Alpha Component Alpha Blending

* Context Switching

. Registers

. Readback

Introduction
The alpha value is an opacity gradient, with the value of 0 representing complete
transparency and a value of 1 representing complete opacity.

Both source and destination pixels have associated blending functions that perform
calculations to set opacity values before blending the two pixel values occurs.

Alpha Blend Functions
Alpha blending functions are performed on both color components and alpha components.
The alpha blend unit performs the following functions:

* Calculates opacity on incoming (source) pixel information

* Calculates opacity on existing framebuffer (destination) pixel information
* Blends the source and destination pixel information into a new pixel value
Alpha Blend Registers

The alpha blend registers comprise the following segments:
* Alpha Blend Color Operations

. Alpha Blend Alpha Operations

. Alpha Source Color Assignments

* Alpha Destination Color Assignments

. Chroma I'est Operations

. 21D Contfiguration Operations

* Context Operations

Proprietary and Confidential 25

Alpha Blending Permedia3 Programmer’s Guide Volume Il

Blending occurs in color mode and alpha mode alpha blend registers, called
AlphaBlendColorMode and AlphaBlendAlphaMode, respectively.

The AlphaBlendColorMode register assigns blend functions to color components R, G
and B, and the AlphaBlendAlphaMode register assigns a blend function to the alpha
component, A.

3.2 Source Blending Functions
Source blending function components are defined in the source blend segment of the
alpha blend color mode register and the alpha blend alpha mode register.
The color mode register name is AlphaBlendColorMode, and its segment is called
SourceBlend. The alpha mode register name is AlphaBlendAlphaMode, and its segment is
called SourceBlend. SourceBlend functions are defined in . The functions correspond to
OpenGL source blending parameters.

3.2.1 OpenGL Alpha Blending
The alpha blend unit, combines the fragment’s color value with that stored in the
framebuffer, using the blend equation:
Co=CgS +Cgb
where: Co is the output color, Cs is the source color (calculated internally) and Cd is the
destination color read from the framebuffer.
The source blending function, S, and the destination blending function, D, are defined in
the following tables. These tables assume a number range of 0.0 to 1.0.

Mode |Value R G

0 Zero 0 0 0 0

1 One 1 1 1 1

2 Destination Color Rg Gq Bq Ad

3 One Minus Destination Color 1-Ry 1-Gq 1-Bq 1-Aq

4 Source Alpha Ag Ag As As

5 One Minus Source Alpha* 1-Ag 1-Ag 1-Ag 1-Ag

6 Destination Alpha Ad Ad Ad Ad

7 One Minus Destination Alpha 1-Ad 1-Ad 1-Ad 1-4Ad

8 Source Alpha Saturate min of min of min of 1

A 1-Ad) |(As1-Ad) [(As1-AY)

One Minus Value is sometimes referred to as Inverse Value.

26

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

Alpha Blending

Table 3.3 Source Blending Functions

The terms in the equations are in the form Cxy, where x denotes source component (s) or
destination component (d), and y denotes color component r, g, b, or a, for Red, Green,
Blue, or Alpha, respectively.

Note: The equations in Table 8.18 are defined as floating point numbers. All source
color component valuesarein therange 0 to 1.0 inclusive.

Mode |Value R G B A

0 Zero 0 0 0 0

1 One 1 1 1 1

2 Source Color Rs Gs Bs Ag

3 One Minus Source Color 1-Rg 1-Gs 1-Byg 1-Ag

4 Source Alpha Ay Ay As As

5 Onc Minus Source Alpha 1-Ag 1-Ay 1-Ag 1-As

6 Destination Alpha Ad Ad Ad Ad

7 Onc Minus Destination Alpha 1-Aq 1-Aq 1-Aq 1-Ag

Table 11.4 Destination Blending Functions

3.3 Destination Blending Functions
Destination blending function components are defined in the destination blend segment of
the alpha blend color mode register and the alpha blend alpha mode register.
The color mode register name is AlphaBlendColorMode, and its segment is called
DestBlend. The alpha mode register name is AlphaBlendAlphaMode, and its segment is
called DestBlend.
The destination blending functions are defined in The Permedia3 Reference Guide. The
functions correspond to OpenGL source blending parameters.
If the blend operations require any destination color components then the framebuffer read
mode must be set appropriately.
In some situations blending is desired when no retained alpha buffer is present. In this
case the alpha value which is considered to be read from the framebuffer will be set to 1.0.
The NoAlphaBuffer bit in the AlphaBlendAlphaMode register controls this.
See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details of alpha blending.
The terms in the equations in are in the form Cxy, where x denotes source component (s)
or destination component (d), and y denotes color componentr, g, b, or a, for Red, Green,
Blue, or Alpha, respectively.
These equations in are defined as floating point numbers. All source color component
values should be in the range 0 to 1.0 inclusive.

3Dlabs Proprietary and Confidential 27

Alpha Blending Permedia3 Programmer’s Guide Volume Il

331

QuickDraw 3D Alpha Blending

When the AlphaType bit in the AlphaBlendAlphaMode register is set then QuickDraw 3D
style alpha blend equations are followed. The OpenGL equations above are used for the
RGB components, but the alpha channel is treated differently and has a single source and
destination blend functions as follows:

Ca=1-(1-Csa)*(1-Cda)

The source and destination blend functions should be set as follows:

Name Source Blend Destination Blend

Pre-multiplied ONL ONLE_MINUS_SRC_ALPHA

Interpolated SRC_ALPHA ONLE_MINUS_SRC_ALPHA

Table 3.5 Source Blending Functions

3.3.2

3.3.3

28

The alpha calculation is the same for both modes.

Image Formatting

The alpha blend and color formatting units can be used to format image data into any of
the supported Permedia3 framebuffer formats, though conversion between Cl and RGB
modes or vice versa are not supported.

Consider the case where the framebuffer is in RGBA 4:4:4:4 mode, and an area of the

screen is to be uploaded and stored in an 8 bit RGB 3:3:2 format. The sequence of

operations is:

e Set the rasterizer as appropriate (described in section {Error! Reference source not found.)

* Enable framcbuffer reads

* Disable framebuffer writes and set the UpLoadData bit in the FBWriteMode register

* Linable the alpha blend unit with a blend function which passes the destination value and ignores
the source value (source blend Ziero, destination blend One) and set the color mode to RGBA
4:4:4:4

e Set the color formatting unit to format the color of incoming fragments to an 8 bit RGB 3:3:2
framcbuffer format.

The upload now proceeds as normal.

The same technique can be used to download data which is in any supported framebuffer

format, in this case the rasterizer is set to sync with FBData, rather than Color. In this case
framebuffer writes are enabled, and the UpLoadData bit cleared.

Registers
The unit is controlled by the AlphaBlendAlphaMode and AlphaBlendColorMode registers:

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

AlphaBlendAlphaMode
AlphaBlendAlphaModeAnd
AlphaBlendAlphaModeOr

Alpha Blending

Name Type Offset Format
AlphaBlend AlphaMode Alpha Blend Ox AFA8 Bitficld
AlphaBlendAlphaModeAnd Alpha Blend Ox AID30 Bitficld Logic Mask
AlphaBlendAlphaModeOr Alpha Blend 0x AD38 Bitfield Logic Mask
Control registers
Bits Name Read! | Write | Reset Description
0 Lnable O 0 X When set causes the fragment's alpha to be alpha
blended under control of the remaining bits in this
register. When clear the fragment alpha remains
unchanged (but may later to affected by the chroma
test).
1...4 SourceBlend 0O 0 X "I'his ficld defines the source blend function to usc.
See the table below for the possible options.
5...7 DestBlend O 0 X This field defines the destination blend function to
use. See the earlier table for the possible options.
8 Source O 0 X "I'his bit, when sct causces the source blend result to be
TimesTwo multiplied by two before it is combined with the dest
blend result. When this bit is clear no multiply occurs.
9 Dest'l'imes O 0 X "I'his bit, when sct causes the dest blend result to be
Two multiplied by two before it is combined with the
source blend result. When this bit is clear no multiply
oceurs.
10 Invert Source O O X This bit, when set, causes the incomming source data
to be inverted before any blend operation takes place.
1 Invert Dest O 0 X "I'his bit, when set, causes the incomming dest data to
be inverted before any blend operation takes place.
12 NoAlpha O 0 X When this bit is set the source alpha value is always set
Buffer to 1.0. "I'his is typically used when no retained alpha
buffer is present but will also override any retained
alpha value if one is present. Color formats with no
alpha ficld defined automatically have their alpha value
set to 1.0 regardless of the state of this bit.

1 Logic Op register readback is via the main register.

3Dlabs

Proprietary and Confidential 29

Alpha Blending

Permedia3 Programmer’s Guide Volume Il

13

Alpha Type

This bit selects which set of equations are to be used
for the alpha channcl.

0 = OpenGl.

1= Apple

14

Alpha

Conversion

"I'his bit sclects how alpha component less than 8 bits
wide are converted to 8 bit wide values prior to the
alpha blend calculations. The options are

0 = Scale

1 = Shift

15

Constant

Source

This bit, when set, forces the Source color to come
from the AlphaSourceColor register (in 8888 format)
instead of the framebuffer.

0 = Use framebuffer alpha

1 = Use AlphaSourceColor register alpha valuc.

16

Constant Dest

‘I'his bit, when sct, forces the destination color to
come from the AlphaDestColor register (in 8888
format) instead of the fragment's color.

0 = Use fragment's alpha.

1 = Use AlphaDestColor register alpha value

17..

.19

Operation

This field selects how the source and destination blend
results are to be combined. ‘The options are:

0=Add 1 = Subtract (ie. S - D)

2 = Subtract reversed (ie. D - §)

3 = Minimum 4 = Maximum

30

Proprietary and Confidential

3Dlabs

Permedia3 Programmer’s Guide Volume Il

Alpha Blending

Notes

The Alpha Conversion bit selects the conversion method for alpha values read from the
framcbuffer.

"I'he Scale method lincarly scales the alpha values to fill the full range of an 8 bit value. "I'his
method is preferable when, for example, downloading an image with fewer bits per pixel into a
deeper (.e. more bits per pixel) framcbuffer.

"I'he Shift method just left shifts by the appropriate amount to make the component 8 bits wide.
This method is preferable when blending into a dithered framebuffer as it preserves the
framcbuffer alpha when fragment alpha does not contribute to it.

Alpha is controlled scparately from color to allow, for example, the situation in antialiasing where
it represents coverage - this must be linearly scaled to preserve the 100% covered state.

"T'he logic operator cquivalents behave the same way but the new mode is AN1Y’d or OR’d with
the former mode before replacing it.

The table below shows the different color modes supported. In the R, GG, B and A columns the
nomenclature n@m means this component is n bits wide and starts at bit position m in the
framcebuffer. ‘T'he least significant bit position is 0 and a dash in a column indicates that this
component does not exist for this mode.

In the case of the RGB formats where no Alpha is shown then the alpha field is set to 255. In
this casc the NoAlphaBuffer bit in the AlphaBlend AlphaMode register should be set which causes
the alpha component to be set to 255.

"I'wo color ordering formats are supported, namely ABGR and ARGB, with the right most letter
representing the color in the least significant part of the word. ‘This is controlled by the Color
Ozder bit in the AphaBlendColorMode register, and is easily implemented by just swapping the R
and B components after conversion into the internal format. "I'he only exception to this are the
3:3:2 formats where the actual bit ficlds extracted from the framebuffer data need to be modified
as well because the R and B components are differing widths. CI processing is not effected by
this swap and the result is always on internal R channel.

"T'he format to usc is held in the AphaBlendColorMode register. Note that in OpenGl. the alpha
blending is not defined for CI mode..

When converting a Color Index value to the internal format any unused bits are st to zero

Figure 3-1 AlphaBlendMode Register

3Dlabs

The ColorConversion bit selects the conversion method for RGB values read from the
framebuffer.

The Scale method linearly scales the color values to fill the full range of an 8 bit value.
This method is preferable when, for example, downloading an image with fewer bits per
pixel into a deeper (i.e. more bits per pixel) framebuffer.

The Shift method just left shifts by the appropriate amount to make the component 8 bits
wide. This method is preferable when blending into a dithered framebuffer as it preserves
the framebuffer color when fragment color does not contribute to it. The scale method
would otherwise cause the ‘fraction’ bits to be non zero, which may result in a different
color when re-dithered again. This shows up as a faint outline of the underlying polygon,
when, for example, an alpha blended texture is used with zero value to provide cut-outs.

Proprietary and Confidential 31

Alpha Blending Permedia3 Programmer’s Guide Volume Il

The AlphaConversion bit selects the conversion method for the Alpha values in a similar
way. lItis controlled separately to allow, for example, the situation in antialiasing where it
represents coverage - this must be linearly scaled to preserve the 100% covered state.

The alpha blend can be augmented by a chroma test, discussed next.

6.1.2 Chroma Testing

Chroma test involves testing a fragment’s color against a range of colors. The fragment
can then be rejected based on the outcome. The framebuffer source color, framebuffer
destination color and the fragment’s color before or after alpha blending can all be used for
the test.

The source and destination keying are needed by DirectX for its chroma key blts.

Rejecting a fragment based on its color can be used to prevent writes where the
destination color does not change. For example a fogged fragment which has the same
color as the background fog color does not need to be written if the screen was cleared to
the fog color.

The chroma test is given by:

Cl $T,%Cu, & Cl <T,<Cu & ChH<T,<Cu & CL ST, <0k,

where Cl is the lower chroma value held in the ChromalLower register, Cu is the upper
chroma value held in the ChromaUpper register and T is the selected color to test against.
Each component is tested separately and obviously a component can be excluded from
the test by setting the lower and upper values to 0 and 255 respectively.

The format of the ChromaLower and ChromaUpper registers is the red byte is in the
least significant byte, then the green byte and finally the blue byte. If the framebuffer
format for a color component is less than 8 bits then the unused bits in the upper and lower
register for this component are set to zero.

The chroma test is enabled when the Enable bit in the ChromaMode register is set. The
source color to test is given by the Source field. The sense of the chroma test is controlled
by the Sense bit - the effect shown in the table below:

Chroma Test Test Result ChromaSense |Action

Enabled

N X X [The framebuffer is updated as normal
Y Halsc Include I'he framcebuftfer is not updated

Y "I'ruc Include I'he framebuffer is updated as normal
Y Tralse Lxclude [The framebuffer is updated as normal
Y True Lxclude [The framebuffer is not updated

The format of the ChromaTestMode register is:

32 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il
Alpha Blending

ChromaTestMode
ChromaTestModeAnd
ChromaTestModeOr

Name Type Offset Format

ChromaTestMode Alpha Blend 0x8I'18 Bitfield

ChromaTestModeAnd Alpha Blend 0xACCO Bitfield Logic Mask

Chroma'l'cstModeOr Alpha Blend 0xACC8 Bitficld Logic Mask

Control registers

Bits Name Read? | Write | Reset Description

0 Hnable O O X When set enables chroma testing under control
of the remaining bits in this register. When clear
no chroma test is done.

1...2 Source | | X "I'his ficld sclects which color (after any suitable
conversion) is to be used for the chroma test. ‘The
values are:

0 = FBSourccData

1 = FBData

2 = Input Color (from fragment)

3 = Output Color (after any alpha
blending)

3.4 PassAction 0O 0 X "I'his ficld defines what action is to be taken if the
chroma test passes (and is enabled). The options are:

0 = Pass

1 = Reject

2 = Substitute ChromaPassColor

3 = Substitute ChromaFailColor

5...6 FailAction 0O 0 X "I'his ficld defines what action is to be taken if the

chroma test fails (and is enabled). The options are:
0 = Pass
1 = Reject
2 = Substitute ChromaPassColor
3 = Substitute ChromaFailColor
7...31 Unuscd 0 0 X

2 Logic Op register readback is via the main register only

3Dlabs Proprietary and Confidential 33

Alpha Blending Permedia3 Programmer’s Guide Volume Il

Notes: Used to test the fragment’s color against a range of colors after alphablending. The chroma test is
cnabled by the enable bit (0) in the register. Note: incompatible with MX programming.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

The color format and order is needed as the destination color is read from the framebuffer
and needs to be converted into the internal Permedia3 representation, it should therefore
be set as appropriate for the framebuffer.

Internal Color Channel
Format Namc R G B A
0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4444 4@0 4@4 4@8 4@12
Color 3 4:4:4:4Front 4@0 4@8 4@16 4@24
Order: 4 4:4:4:4Back 44 4@12 4@?20 4@28
BGR 5 3:3:2Front 3@0 3@3 2@6 255
6 3:3:2Back 3@8 3@11 2@14 255
7 1:2:1Front 1@0 2@ 1@3 255
8 1:2:1Back 1@4 2@5 1@7 255
13 5:5:5Back 5@16 5@21 5@26 255
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 s@12
Color 3 4:4:4:4T ront 4@16 4@8 4@0 4@24
Order: 4 4:4:4:4Back 4@20 s@12 4@4 4@28
RGB 5 3:3:2Kront 3@5 3@?2 2@0 255
6 3:3:2Back 3@13 3@10 2@8 255
8 1:2:1Back 1@7 2@5 1@4 255
7 1:2:1Front 1@3 2@ 1@0 255
13 5:5:5Back 5@?26 5@?21 5@16 255
CI 14 C18 8@0 0 0 0
15 Cl4 4@0 0 0 0
Table 3.6 Permedia3 Color Modes

The framebuffer may be configured to be RGBA or Color Index (Cl). The R, G, B and A
columns show the width of each color component. n@m means that n bits starting at bit
position m are read and scaled to fit the 8bit internal color channel format. The least
significant bit position is zero. A numerical value (0 or 255) indicates the value substituted
when the corresponding channel does not exist in the framebuffer.

34 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

3.34

Alpha Blending

For the Front and Back Modes the value to be blended is read only from the low bits or
high bits respectively. This is to assist with color space double buffering.

When 5:5:5 bitplane double buffering is required, the 5:5:5:5 mode with the NoAlphaBuffer
bit in the AlphaBlendAlphaMode register is set, is used to select the front buffer. The
back buffer is selected by using the 5:5:5Back mode, in which case the state of the
NoAlphaBuffer bit is ignored.

Alpha Blend Example

This example sets the blend mode to allow antialiasing of polygons, i.e. source blend
function = Source Alpha Saturate, destination blend function = One. These blend functions
are suitable for polygon antialiasing when polygons are drawn in front to back order, and
the depth test is disabled.

// Lnable framebuffer reads allow blend operation
// - Not Shown -

// Set the alpha mode.

alphaBlendMode.UnitEnable = PERMEDIA3_ENABLE
alphaBlendMode.SourceBlend = PERMEDIA3_BLIEND_SRC_ALPHA SATURATL
alphaBlendMode.DestinationBlend = PERMEDIA3_BLEND_ONL
alphaBlendMode.ColorHormat = as appropriate

AlphaBlendMode(alphaBlendMode) // Load register

// LEnable antialias application and disable
// depth testing
// - Not Shown -

// Render polygons sorted front to back with

// Coverage Enable bit sct in the Render command
// - Not Shown —

3Dlabs

Proprietary and Confidential 35

Permedia3 Programmer’s Guide Volume Il

Color Format

Color Format and Logical Ops

6.2

3Dlabs

The color format unit converts from Permedia3’s internal color representation to a format
suitable to be written into the framebuffer. This process may optionally include dithering of
the color values for framebuffers with less than 8 bits width per color component. If the unit
is disabled then the color is not modified in any way.

Color and Alpha Formats

Permedia3 separates the Alpha and Color format information into two new registers
(AlphaBlendColorMode and AlphaBlendAlphaMode). The AlphaBlendMode register is
not supported.

The color format is held in the AlphaBlendColorMode register. Note that in OpenGL
alpha blending is not defined for CI mode. Raw framebuffer formats from local memory are
only converted to 8-bit formats in the AlphaBlend registers.

Alpha is controlled separately from color to allow, for example, the situation in antialiasing
where it represents coverage - this must be linearly scaled to preserve the 100% covered
state.

The table below shows the different color modes supported. Inthe R, G, B and A columns
the nomenclature n@m means the component is n bits wide and starts at bit position m in
the framebuffer. The least significant bit position is 0 and a dash in a column indicates that
this component does not exist for this mode.

In the case of RGB formats where no Alpha is shown, the alpha field should be set to 255.
Use the NoAlphaBuffer bit in the AlphaBlendAlphaMode register to do this.

Permedia3 supports two color-ordering formats: ABGR and ARGB. The rightmost letter
represents the color in the least significant part of the word. This is controlled by the
ColorOrder bit in the AlphaBlendColorMode register (and elsewhere), and is easily
implemented by just swapping the R and B components after conversion into the internal
format. The only exception to this are the 3:3:2 formats where the actual bit fields
extracted from the framebuffer data need to be modified as well because the R and B
components are differing widths. CI processing is not affected by this swap and the result
is always on the internal R channel.

When converting a Color Index value to the internal format any unused bits are set to zero

Internal Color Channels
Format Color Name R G B A
Order
0 BGR 88:88 8@0 8@8 8@16 8@24 |
1 BGR 4444 4@0 4@4 4@8 4@12 |

Proprietary and Confidential 37

Framebuffer Writemasks

Permedia3 Programmer’s Guide Volume Il

C 2 BCR 5551 |5@0 5@5 5@10 1@15
O 3 BGR 5:6:5 5@0 6@5 5@11 -
1 4 BGR 3:3:2 3@0 3@3 2@6 -
o 0 RCB 8:8:88 |8@16 @8 8@0 8@24
u 1 RGB 4444 |4@8 4@4 4@0 @12
r 2 RGB 5551 |5@10 5@5 5@0 1@15
3 RGB 5:6:5 5@11 6@5 5@0 -
4 RCB 3:3:2 3@5 3@2 2@0 -
CI 15 X CI8 8@0 0 0 0

The AlphaConversion bit in the AlphaBlendAlphaMode register selects the conversion

method for alpha values read from the framebuffer. When the conversion bit is set the

corresponding component(s) is left shifted by (8 - n) bits and zero filling.

Note For some formats the components have different widths, hence different

values of n.

e The Scale method linearly scales the alpha values to fill the full range of an 8 bit value. This
method is preferable when, for example, downloading an image with fewer bits per pixel into a
deeper (i.e. more bits per pixel) framebuffer.

e The Shift method left shifts by the appropriate amount to make the component 8 bits wide. This
method is preferable when blending into a dithered framebuffer as it preserves the framebufter
alpha when fragment alpha does not contribute to it. Hor example if a three bit component has
bits B2, B1 and BO then the 8 bit value would be made up as follows:

Bit 7 Bit O of output byte

v v

B2 B1 BO B2 By Bgp B2 Bi

If the alpha component doesn't exist in the format, or NoAlphaBuffer is set then the alpha

value is not affected by the setting of the AlphaConversion bit and is always set to 255 (in

the 8 bit domain) or 256 (in the 9 bit domain).

The AlphaBlendColorMode register controls color channel blending. It has the following

format:

Name Type Offset Format

AlphaBlendColorMode Alpha Blend Ox AFAO Bitficld

AlphaBlendColorModeAnd ~ Alpha Blend 0x ACBO Bitfield Logic Mask

AlphaBlendColotModeOr Alpha Blend 0x ACBS8 Bitfield Logic Mask
Control registers

38

Proprietary and Confidential

3Dlabs

Permedia3 Programmer’s Guide Volume Il
Color Format

Bits Name Read® |Write |Reset Description

0 Hnable g 1l X When sct causes the fragment's color to be alpha
blended under control of the remaining bits in this
register. When clear the fragment color remains
unchanged (but may later to effected by the chroma
test).

1...4 SourceBlend O i X "I'his ficld defines the source blend function to use. Sce
the table in the AphaBlendColorMode register for the

possible options

5...7 DestBlend 0 il X "I'his ficld defines the destination blend function to usc.
See the table in the AphaBlendColorMode register for the

possible options

8 Source O i} X This bit, when set causes the source blend result to be
"I'imes’l'wo multiplicd by two before it is combined with the dest

blend result. When this bit is clear no multiply occurs

9 DestTimes Two |[J il X This bit, when set causes the dest blend result to be
multiplicd by two before it is combined with the source
blend result. When this bit is clear no multiply occurs

10 InvertSource O O X This bit, when set, causes the incomming source data

to be inverted before any blend operation takes place

11 InvertDest O O X This bit, when set, causes the incomming dest data to

be inverted before any blend operation takes place

12...15 Color Format |[J O X "I'his ficld defines framebuffer color formats. Sce the
table in the AphaBlendColorMode register for the

possible options

16 ColorOrder O O X "I'his bit sclects the color order in the framebuffer:
0= BGR
1=RGB
17 Color | il X This bit selects how color components less than 8 bits
Conversion wide are converted to 8 bit wide values prior to the
alpha blend calculations. The options are
0 = Scale
1 = Shift
18 Constant Source |[] O X This bit, when set, forces the Source color to come

trom the AfphaSourceColor register (in 8888 format)
instcad of the framebuffer.
0 = Use framebuffer

1 = Usc AlphaSourceColor register

3 Logic Op register readback is via the main register

3Dlabs Proprietary and Confidential 39

Framebuffer Writemasks

Permedia3 Programmer’s Guide Volume Il

19 ConstantDest

This bit, when set, forces the destination color to come
from the AphaDestColor register (in 8888 format)
instead of the fragment's color.

0 = Use fragment's color.

1 = Usce AfphaDestColor register.

20...23 Operation

"I'his ficld sclects how the source and destination blend
results are to be combined. The options are:

Add

Subtract (i.c. S - D)

Subtract reversed (le. D - §)

Minimum

H WD - O

Maximum

24 SwapSD

This bit, when set causes the source and destination
pixcl values to be swapped. "T'he main use for this is to
allow a downloaded color value to be in a format other

than 8888 and use this unit to do color conversion.

The ColorConversion bit selects the conversion method for RGB values read from the
framebuffer, similarly to the AlphaConversion bit for alpha values:

. The Scale method linearly scales the color values to fill the full range of an 8 bit value. This

method is preferable when, for example, downloading an image with fewer bits per pixel into a

deeper (i.e. more bits per pixel) framebuffer.

e The Shift method left shifts by the appropriate amount to make the component 8 bits wide. This

method is preferable when blending into a dithered framebuffer as it preserves the framebuffer

color when fragment color does not contribute to it

4.1.1 Color Dithering

Permedia3 uses an ordered dither algorithm to implement color dithering. The following
table shows the exact type of dithering used when dither is enabled. The type of dithering
depends on the width of individual color components:

4

Component Width Type of Dithering
8 No Dithering
5 2x2 Ordered Dither
4 4x4 Ordered Dither
3 4x4 Ordered Dither
2 4x4 Ordered Dither

#he scale method would otherwise cause the 'fraction’ bits to be non zero, which could result in a different color when re-
dithered again. This shows up as a faint outline of the underlying polygon, when, for example, an alpha blended texture is used
with zero value to provide cut-outs.

40

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

Color Format

1 4x4 Qrdered Dither

Table 4.7 Dither Methods

Permedia3’s ordered dither matrices are shown below:

0 8 2 10

12 4 14 6 0 2
3 11 1 9 3

15 7 13 5

Table 4.8 Ordered Dither Matrices, 4x4 and 2x2.

If the color formatting unit is disabled, the RGBA color components are not modified and
will be truncated or rounded under the control of the RoundingMode bit in the DitherMode
register when they are placed in the framebuffer. This assumes that the framebuffer width
is less than 8 bits per component. In Cl mode the value is rounded to the nearest integer.
In both cases the result is clamped to a maximum value to prevent overflow.

In some situations only screen coordinates are available, but windows-relative dithering is
required. This can be implemented by adding an optional offset to the coordinates before
indexing the dither tables. The offset is a two bit number which is supplied for each
coordinate, X and Y. The XOffset, YOffset fields in the DitherMode register control this
operation, if window relative coordinates are used they should be set to zero. For more
information on offset calculation see section 4.2.9.1 - Address Calculation, in Volume |

Alpha channel dithering is qualified by the AlphaDither control bit. When cleared the alpha
channel is processed in the same way as the color channels, as dictated by the
DitherEnable bit. When the AlphaDither bit is set however, the alpha channel is not
dithered, but is processed according to the state of the RoundingMode bit. The ability to
disable dithering on the alpha channel is useful when using the alpha buffer to hold
coverage information during antialiasing. In this situation dithering adds noise to the
coverage value, which would create artifacts where a pixel which should be fully covered is
reported as not fully covered.

See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details on dithering.

4.1.2 Registers
Dither operations are controlled by the DitherMode register:

DitherMode
DitherModeAnd
DitherModeOr

Name Type Offset Format

DitherMode Global 0x8818 Bitfield

DitherModeAnd Global 0xACIDO Bitficld Logic Mask
3Dlabs Proprietary and Confidential 41

Framebuffer Writemasks

Permedia3 Programmer’s Guide Volume Il

DitherModeOr Global 0xACDS Bitfield Logic Mask
Control Register

Bits Name Read | Write | Reset | Description

0 HEnable a 1 X When sct causes the fragment's color values to be
dithered or rounded under control of the remaining
bits in this register. If this bit is clear then the
fragment's color is passed unchanged.

1 Dither Enable | [i X When this bit is set any RGB format color is dithered,
otherwise it is rounded to the destination size under
control of the RoundingMode field. See the table
below for the dither matrix and how it is combined
with the color components. Color Index formats arce
always rounded.

2...5 Color I'ormat g (1 X The color format which in turn is coded from the size
and position of the red, green, blue and (if present) the
alpha components.

6...7 Xoffsct O i X "I'his offsct is added to the fragment's x coordinate to
derive the x address in the dither table. This allows
window-rclative dithering using screen coordinates.

8...9 Yoffset O i X This offset is added to the fragment's y coordinate to
derive the y address in the dither table. This allows
window-rclative dithering using screen coordinates.

10 Color Order O i X Holds the color order. The options are:

0=BGR
1 =RGB

11...13 Reserved 0 0 x

14 Alpha Dither O i X "I'his bit allows the alpha channcl to be rounded even
when the color channels are dithered. This helps
when antialiasing.

0 = Alpha valuc is dithered (if
DitherEnable is set)
1 = Alpha value is always rounded.

15...16 Rounding | i X 0 = "I'runcate

Mode 1 =Round Up
2 = Round Down
17...31 Unused 0 0 X
Figure 4-1 DitherMode Register

4.1.3 Dither Example
To set the framebuffer format to RGB 3:3:2 and enable dithering:

42

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il
Color Format

/1 332 Dithering

di t her Mbde. Uni t Enabl e = PERMEDI A3_TRUE

di t her Mbde. Di t her Enabl e = PERMVEDI A3_TRUE

di t her Mbde. Col or Mode = PERMEDI A3_COLOR_FORNMAT_RGB 332

Di t her Mode(di t her Mode) /1 Load register

414 3:3:2 Color Format Example
To set the framebuffer format to RGB 3:3:2 and disable dithering:

/1 332 No Dither

di t her Mbde. Uni t Enabl e = PERMEDI A3_TRUE

di t her Mode. Di t her Enabl e = PERMEDI A3_FALSE

di t her Mbde. Col or Mode = PERMEDI A3_COLOR_FORNMAT_RGB 332
Di t her Mode(di t her Mode) /1 Load register

4.1.5 8:8:8:8 Color Format Example
To set the framebuffer to RGBA 8:8:8:8 and not dithered:

/1 8888 Dithered (No effect as 8 bit conponents are
/1 not dithered)

di t her Mbde. Uni t Enabl e = PERMEDI A3_TRUE

di t her Mode. Di t her Enabl e = PERMEDI A3_FALSE

di t her Mbde. Col or Mode = PERMEDI A3_COLOR_FORVAT_RGBA 8888
Di t her Mode(di t her Mode) /1 Load register

The same can be achieved by disabling the color formatting unit as 8 bit components are
not dithered:

/] 8888 No dither
di t her Mbde. Uni t Enabl e = PERMEDI A3_FALSE

Di t her Mode(di t her Mode) /1 Load register

4.1.6 Color Index Format Example
To set the framebuffer to 4 bit Color Index and enable dithering:

/1 4 bit Cl with dithering

di t her Mbde. Uni t Enabl e = PERMEDI A3_TRUE

di t her Mode. Di t her Enabl e = PERMEDI A3_TRUE

di t her Mode. Col or Mode = PERVEDI A3_COLOR FORMAT Cl_4
Di t her Mode(di t her Mode) /1 Load register

4.2 Logical Op Unit

The logical op unit performs two functions; logic ops between the fragment color (source
color) and a value from the framebuffer (destination color), and, optionally control of a
special Permedia3 mode which allows high performance flat shaded rendering.

3Dlabs Proprietary and Confidential 43

Framebuffer Writemasks Permedia3 Programmer’s Guide Volume Il

4.2.1 High Speed Flat Shaded Rendering

This mode is still supported on the Permedia3 and is detailed below for completeness but
offers no advantage over span processing. The technigue uses a color value from the
FBWriteData register instead of fragment color. It is retained for backwards compatibility
only. To use the mode the following constraints must be satisfied:

* Flat shaded aliased primitive

* No dithering required or logical ops

* No stencil, depth or GIDD testing required

. No alpha blending

If all the conditions are met then load the FBWriteData register with the required
framebuffer color data and set the UseConstantFBWriteData bit in the LogicalOpMode
register. All unused units should be disabled.

This mode is most useful for 2D applications or for clearing the framebuffer when the
memory does not support block writes. Note that the FBWriteData register should be
considered volatile when context switching.

4.2.2 Logical Operations
The logical operations supported by Permedia3 are:

Mode Name Operation Mode Name Operation
0 Clear 0 8 Nor ~(| D)
1 And S&D 9 Lquivalent ~(" D)
2 And Reverse S&~D 10 Invert ~DD
3 Copy S 11 Oz Reverse S|~D
4 And Inverted ~S & D 12 Copy Invert ~S
5 Noop D 13 Or Invert ~S| D
6 Xor S™D 14 Nand ~(S & D)
7 Or S|D 15 Set 1
Where: S = Source (fragment) color, D = Destination (framebuffer) color
Table 4.9 Logical Operations

For correct operation of this unit in a mode which takes the destination color, Permedia3
must be configured to allow reads from the framebuffer using the FBReadMode @ @ @
register. See section 82 for more details.

Permedia3 makes no distinction between RGBA and Cl modes when performing logical
operations.

4.2.3 Registers

The operation of the unit is controlled by the LogicalOpMode register:

44 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

LogicalOpMode
LogicalOpModeAnd
LogicalOpModeOr

Color Format

Name Type Offset Format
LogicalOpMode Logic Ops 0x8828 Bitfield
LogicalOpModeAnd Logic Ops OxATECO Bitfield Logic Mask
LogicalOpModeOr Logic Ops 0xAHC8 Bitficld Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
0 Lnable O 1 X When set causes the fragment's color to be logial
op'ed under control of the remaining bits in this
register. When clear the fragment color remains
unchanged (but may later to effected by write
masking).
1...4 LogicOp O | X "I'his ficld defines the logical op function to use. ‘The
options are:
0 = Clear (0) 1= And(S & D)
2= AndReverse (S & ~12) 3= Copy (5)
4 = AndInvert (~S & D) 5 = Noop (D)
6=Xor (S™ D) 7=0c(S| D)
8 =Nor (~(§ | D); 9 = Equiv (~(§ "~ D);
10 = Invert (~D)
11 = OrReverse (S | ~1D)
12 = Copylnvert (~S)
13 = Orlavert (~S | D) 14 = Nand (~(S & D);
15 = Set (1)
where: S is Color or FBSourcelData
D is I'BData
5 UscConstantkB | [| X "T'here is no longer any performance advantage to
WeriteData using this bit but it is retained for backwards
compatability.
6 BackgroundkEn | [| X "I'his bit, when set, enables a different logical operation
able to be done for background pixels. If this bit is clear
then the same logical operation is applied to
foreground and background pixels. Setting this bit
when the [nable field is zero has no effect.
A background pixel is a pixel whose corresponding bit
in the color mask is zcro.
3Dlabs Proprietary and Confidential 45

Framebuffer Writemasks

Permedia3 Programmer’s Guide Volume Il

7...10 BackgroundLog | [i X This field specifies the logical operation to apply to
icalOp background pixcls, if this has been enabled by the
BackgroundEnable ficld. "T'he options and ficld values

are the same as the LogicalOp field.

1 UscConstantSo | [[X "I'his ficld, when sct, causcs the source data to be taken
urce from the ForegroundColor register, otherwise it is
taken from the fragment, if needed. The color format
is in the raw framcbuffer format and 8 or 16 bit pixels
should have their color replicated to fill the full 32
bits.

12...31 Unused 0 0 X

4.2.4 XOR Example

To set the logical operation to XOR.

/1 Set framebuffer to allow reads

/1 Not shown

| ogi cal OpMode. Uni t Enabl e = PERMEDI A3_ENABLE

| ogi cal OpMbde. Logi cal Op = PERVEDI A3_LOG COP_XOR

Logi cal OpMode(| ogi cal Opwbde) // Load register

4.2.5 Logical Op and Software Writemask Example

To set the logical operation to COPY, enable the software writemask, and write to the
green component in an 8 bit framebuffer configured in 3:3:2 RGB mode:

/1 Set franebuffer to allow reads
/1 Not shown

di t her Mode. Uni t Enabl e = PERVEDI A3_ENABLE

di t her Mode. Di t her Enabl e = PERMEDI A3_ENABLE

di t her Mode. Col or Mode = PERMEDI A3_COLOR_FORVAT_RGB_332

Di t her Mode(di t her Mbde) /1 Load register

| ogi cal OpMbde. Uni t Enabl e = PERMEDI A3_ENABLE
| ogi cal OpMode. Logi cal Op = PERMEDI A3_LOG COP_COPY
Logi cal OpMode(| ogi cal Opwbde) // Load register

FBSof t war eW i t eMask(OxFFFFFFE3)

46 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

Framebuffer Writemasks

10

Framebuffer Writemasks

5.1.1

5.1.2

5.1.3

5.1.4

Two types of framebuffer writemasking are supported by Permedia3; Software and
Hardware. Software writemasking requires a read from the framebuffer to combine the
fragment color with the framebuffer color before checking the bits in the mask to see which
planes are writeable. Hardware writemasking is implemented using SDRAM/SGRAM
writemasks and no framebuffer read is required.

Software Writemasks

Software writemasking is controlled by the FBSoftwareWriteMask register. The data field
has one bit per framebuffer bit which when set, allows the corresponding framebuffer bit to
be updated. When reset it disables writing to that bit. Software writemasking is applied to
all fragments and is not controlled by an enable/disable bit. However it may effectively be
disabled by setting the mask to all 1's. Note that the ReadDestination bit must be enabled
in the FBDestReadMode register when using software writemasks, in which some of the
bits are zero.

See the Framebuffer Read/Write section for details of how to enable/disable framebuffer
reads.

Hardware Writemasks

Hardware writemasks, if present, are controlled using the FBHardwareWriteMask register.
If the framebuffer supports hardware writemasks, and they are to be used, then software
writemasking should be disabled (by setting all the bits in the FBSoftwareWriteMask
register). This will result in fewer framebuffer reads when no logical operations or alpha
blending is needed.

If the framebuffer is used in 8 bit packed mode, then an 8 bit hardware writemask must be
replicated to all 4 bytes of the FBHardwareWriteMask register. If the framebuffer is in 16 bit
packed mode then the 16 bit hardware writemask must be replicated to both halves of the

FBHardwareWriteMask register.

See the Permedia3 Reference Guide for more details of framebuffer hardware writemasks.

Registers

Both registers FBHardwareWriteMask and FBSoftwareWriteMask are 32 bit registers in
which each bit represents a bit in the framebuffer.

Software Writemask Example
Using software writemasks:

/| Enabl e franmebuffer reads (not shown)
/1 Set the witemask

3Dlabs

Proprietary and Confidential 47

Framebuffer Writemasks

FBSof t war eW i t eMask(0xOFOFOFOF)
See 84.2.5 for another example

5.1.5 Hardware Writemask Example

Using hardware writemasks when neither logic ops, nor alpha blending are enabled:

/1 Disable framebuffer reads (not shown)

/1 Set the writemasks

FBSof t war eW i t eMask(OxFFFFFFFF) // ' Di sabl e’

FBHar dwar eW i t eMask(OXxFOFOFOFO) // Actual witenask

48 Proprietary and Confidential

3Dlabs

Permedia3 Programmer’s Guide Volume Il

Permedia3 Programmer’s Guide Volume Il
Host Out

11

Host Out Unit

The Host Out Unit controls which data is available at the output FIFO, and gathers
statistics about the rendering operations (picking and extent testing) and the
synchronization of Permedia3 via the Sync register.

6.1 Filtering

Filtering controls the data available at the output FIFO. There are a number of categories:

* depth, stencil and color: these are data values associated with a fragment which has been read
from the localbuffer or framebuffer, or generated using the UpLoadData flag in the I'ramebuffer
Write Unit.

* A single register, Sync, which is used to synchronize Permedia3 and flush the graphics pipeline.

* Statistics: The registers associated with extent and picking.

The filtering is controlled by the FilterMode register which is split into 2 bit fields for each
category. The 2 bit field selects whether the register tag and/or register data, are passed to
the output FIFO. The format of the FilterMode register is shown in the table below.

Register Category Tag Data Description
Control Control
Bit Bit
Diagnostic Use Only 0
Diagnostic Use Only
Depth 4 5 "I'his is the data from image upload of the Depth (/)
buffer.
Stencil 6 7 This is the data from image upload of the Stencil buffer.
Color 8 9 "I'his is the data from image upload of the Framcbuffer
(FBColor).
Synchronization 10 11
Statistics 13 This is the data generated following a command to read
back the results of the statistic measurements: PickResult,
MaxI [itRcgion, Minl IitRcgion.
Diagnostic Use Only 14 15

Table 6.10 Filter Modes

3Dlabs Proprietary and Confidential 6-1

Host Out Permedia3 Programmer’s Guide Volume Il

6.1.1 Filter Mode Example

/1 Set up Filter node to only permt read back of
/1l synchronization tag and data

Fi | t er Mode(0x0C00) /] Set bits 10 & 11

6.1.2 Statistic Operations

There are two statistic collection modes of operation; picking and extent checking. Picking
is normally used to select drawn objects or regions of the screen. Typically, extent
checking is used to determine the bounds within which drawing has occurred so that a
smaller area of the framebuffer can subsequently be cleared. Spans are handled by
Permedia3 in a fully consistent way for picking and extent checking.

Statistic collection is controlled using the StatisticMode register.

6.1.2.1 Picking
In picking mode, the active and/or passive fragments and spans have their associated XY
coordinates compared against the coordinates specified in the MinRegion and
MaxRegion registers. If the result is true, then the PickResult flag is set, otherwise it holds
its previous state. The compare function can be either Inside or Outside. Before picking
picking can start, the ResetPickResult register must be loaded to clear the PickResult
flag.

The MinRegion and MaxRegion registers are loaded to select the region of interest for
picking picking. A coordinate is inside the region if:

X < Xmax
Y < Ynax

Xmi n
Ymin

IN A

where X and Y are from the fragment and the min/max values are from MinRegion and
MaxRegion registers. This comparison is identical to the one used in the scissor tests.

The following stages are required for picking picking:

1) load ResetPickResult, MinRegion and MaxRegion registers

2) Set up the FilterMode to allow statistic commands out of Permedia3 MX
3) Draw the primitives.

4) Send a PickResult command.

5) Poll the output FIFO waiting for the PickResult to have passed through Permedia3
MX.

6.1.2.2 Extent Checking
In extent mode, active and/or passive fragments have their associated XY coordinates
compared to the MinRegion and MaxRegion registers and if found to be outside the
defined rectangular region, then the appropriate register is updated with the new
coordinate(s) to extend the region. The Inside/Outside bit has no effect in this mode. Block
fills are included in the extent checking if the StatisticMode register is set to include spans.

6-2 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

Host Out

The MinRegion and MaxRegion registers are loaded to select the maximum value
(MinRegion) and minimum value (MaxRegion) for extent checking. A coordinate is inside
the region if:

Xnin < X < Xnax

Ym n <Y < Yrrax

where X and Y are from the fragment and the min/max values are from MinRegion and
MaxRegion registers. This comparison is identical to the one used in the scissor tests.

Once all the necessary primitives have been rendered the results can be found using the
MinHitRegion and MaxHitRegion commands, which cause the contents of the
MinRegion and MaxRegion registers respectively to be written into the output FIFO
(under control of the FilterMode register).

6.1.3 Synchronization
The Sync register is filtered and written to the output FIFO in a similar fashion to the other
registers. If an interrupt is required to be generated then the most significant bit of the
Sync command register must be set, and the filtering must be set up to write something
into the FIFO. If nothing is written to the FIFO (because of the FilterMode) then no interrupt
will be generated. The actual interrupt will not be generated until the Sync data or tag has
passed through, and is on the output of the FIFO, so as to allow low level
resynchronization between the core and PCI clock domains. The FIFO has an extra bit in
width to accommodate the interrupt signal. When both the data and tag are written into the
FIFO only the first entry in the FIFO will cause the interrupt (assuming an interrupt was
requested).
The remaining bits in the data field are free and can be used by the host to identify the
reason for the Sync.

6.1.4 Registers
Filtering is controlled by the FilterMode register:

FilterMode

FilterModeAnd
FilterModeOr

Name Type Offset Format
HilterMode Output 0x8C00 Bitficld
FilterModeAnd Output 0xAIDOO Bitficld Logic Mask
T'lterModeOr Output 0xADO8 Bitfield Logic Mask
Control registers
3Dlabs Proprietary and Confidential 6-3

Host Out

Permedia3 Programmer’s Guide Volume Il

Bits Name Read® | Write | Reset Description

0...3 Reserved g B X Reserved for diagnostic use —set to 0

4 LBDepthTag O i X When set allows the LBDepth tag to be written into the
output FIFO.

5 LBDepthData | [i XX When set allows the data upload from the Depth
buffer to be written into the output FII'O.

6 StencilTag O i X When set allows the LBStencil tag to be written into
the output FIFO.

7 StencilData O i X When set allows the data upload from the Stencil
buffer to be written into the output III'O.

8 FEBColor'l'ag O i X When sct allows the FBCo/or tag to be written into the
output IIIFO.

9 I'BColorData | 1 X When set allows the data upload from the framebuffer
to be written into the output FIFO.

10 SyncTag O i X When set allows Sync tag to be written into the output
FIFO.

11 Synclata a 1 X When sct allows the Sync data to be written into the
output IIIFO.

12 StatisticsTag O i X When set allows the PickResult, MaxHitRegion and
MinHirRegion tags to be written into the output I'IFFO.

13 StatisticsData | [i X When sct allows the PickResult, MaxHitRegion and
MinHirRegion data to be written into the output I'IFO.

14 Remainderlag | O i X When sct allows any tags not covered by the
categories in this table to be written into the output
TIT'O.

15 RemainderData | 0 i X When sct allows any data not covered by the
categories in this table to be written into the output
TIT'O.

16...17 ByteSwap O i "I'his ficld controls the byte swapping of the data ficld
when it is written into the output I'II'O. The options
are:

0=ABCD (.c. no swap)
1=BADC
2=CDAB
3= DCBA

18 ContextTag O i X When set allows the ConzextData and EndOfFeedback
tags to be written into the output FIFO.

19 ContextData O i X When set allows the ContextData and EndOfFeedback
data to be written into the output FTHO.

5 Logic Op register readback is via the main register only

6-4

Proprietary and Confidential

3Dlabs

Permedia3 Programmer’s Guide Volume Il

Host Out
20 RunLength O 1 X This bit, when set, will write run length encoded data
HEncode Data into the host out FIHO.
21...31 Unused 0 0 X
Notes: ‘This register can only be updated if the Security register is set to 0.
Figure 6-1 FilterMode Register
Statistic collection is controlled by the StatisticMode register:
StatisticMode
StatisticModeAnd
StatisticModeOr
Name Type Offset Format
StatisticMode Output 0x8C08 Bitficld
StatisticModeAnd Qutput 0xAD10 Bitfield Logic Mask
StatisticModeOr Output 0xAID18 Bitficld Logic Mask
Command
Bits Name Read | Write | Reset | Description
0 Lnable O 1 X When set allows the collection of statistics
information.
1 StatsType O 1 X Selects the type of staticstics to gather. The options
are:
0 = Picking
1 = Lixtent
2 ActiveSteps g J X When set includes active fragments in the statistics
gathering, otherwise they are excluded.
3 PassiveSteps O | X When sct includes culled fragments in the statistics
gathering, otherwise they are excluded.
4 Compare | J X Selects the type of compare function to use. The
Function options are:
0 = Inside region
1 = Qutside region
5 Spans O | X When sct includes spans in the statistics gathering,
otherwise they are excluded.
6..31 Unused 0 0 X

3Dlabs Proprietary and Confidential 6-5

Host Out Permedia3 Programmer’s Guide Volume Il

Figure 6-2 StatisticMode Register
MinRegion, MaxRegion registers are used to load picking/extent regions, and
MaxHitRegion and MinHitRegion are used to read the registers back. The format is 16
bit 2’s complement numbers, X in the least significant end of the word.

PickResult is used to read the results of picking, the pick flag is placed in the least
significant bit of the 32 bit register. ResetPickResult is used to clear the picking flag, the
data field is not used.

The Sync register is 32 bits with the most significant bit set to indicate an interrupt is to be
generated, bits 0-30 are available for the user.

6.1.5 Picking Example

Set the statistic mode to picking and detect any active fragments in the region 0x0 <= x <
0x100, 0x0 <=y < 0x100. Render some primitives then read back the results.

/1 Set filter node as above
Fi | t er Mode(0x0C00) // Set bits 10 & 11

/1 Set statistic node
M nRegi on(0)
MaxRegi on(0x100 | 0x100 << 16)

/1l dear the picking flag
Reset Pi ckResul t (0x0) /1 Data not used

/1 Now render primtives.... ...
Render (render) /1 Al units set as appropriate

/1 Al rendering finished.

/1 Set the filter node to allow read back of Syncs
/1 and statistic information (tag and data)

Fi | t er Mode(0x3C00) /] Set bits 10 to 13

// Wite to the PickResult register
Pi ckResul t (0x0) // Data not used

/1 Now read the PickResult fromthe output FIFO (not shown)

6.1.6 Sync Interrupt Example

Generate a synchronization interrupt and encode some user defined data (0x34) in the
lower 31 bits of the Sync register.

/] Set up Filter node to only permt read back of
/1l synchronization tag and data
Fi | t er Mode(0x0CO0) /1 Set bits 10 & 11

t

Wite to the Sync register with the top bi
o the

I
/1 (bit 31) set and user data encoded int
/1 lower bits (0-30)

6-6 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

sync = (0x1 << 31) | (0x34 & Ox7FFFFFFF)

Sync (sync)

// Now wait for the sync interrupt.

(Not shown.)

3Dlabs Proprietary and Confidential

Host Out

6-7

Permedia3 Programmer’s Guide Volume Il

Initialization

12

Initialization

7.1

7.1.1

3Dlabs

Initializing Permedia3

This section illustrates how to initialize Permedia3 following reset, prior to carrying out
rendering operations.

Initialization falls broadly into three areas, though in different systems precise

responsibilities can vary:

* System initialization covers the PCI bus, memory set-up and video output. This information
typically is only initialized once following reset.

. Window initialization covers the base address of the current rendering window and its color
format. This must be initialized at reset and needs to be updated each time Permedia3 starts
drawing to a new window.

* Application initialization covers state that is typically dynamic, enabling and disabling depth testing
for example. Again this state must be set at reset, but is likely to be updated relatively frequently.

To make use of the full functionality of Permedia3 consult the relevant sections of Chapter

1 - Graphics Programming. Examples are given which make use of the pseudocode
conventions given in Appendix B.

Note: In general the graphics registers are not hardware initialized to specific
values at reset. In the examples below it is assumed that the data structures
used to load these registers are initialized to zero. Thus bit fields which are
not set explicitly default to zero.

Reset and initialisation

The units and FIFOs can be reset under software control or by a hardware reset signal,
usually as a result of power-on.

During reset all the inter-unit FIFOs, the FIFOs between the core and the memory
controller, and the host interface are emptied. Some of the units (Local Buffer Read and
Framebuffer Read) also have internal FIFOs and these are cleared as well.

All the state machines in each unit are forced into their idle state so this together with the
FIFOs being empty guarantees a safe start when the first message is received.

Note: A reset does not, in general, change the contents of any state information
which can be readback. After a power-on reset al these registers must be
initialised by software to place them in a well defined state before any
rendering isdone. Unitsare not automatically disabled on a reset.

Proprietary and Confidential 7-1

Initialization

6.3

7.1.2

7.1.3

Permedia3 Programmer’s Guide Volume Il

System Initialization

PCI bus

There are a set of PCI related registers which can be interrogated for information about the
chip, for example its revision and device ID. Some of these PCI related registers need to
be set up at reset, for instance to configure the base addresses of the different memory
regions of the chip. However, the subject of PCI bus initialization is beyond the scope of
this document. For more details refer to the Reset chapter of the Permedia3 Reference
Guide, and the PCI Local Bus Specification Rev2.1.

Memory Configuration

There are no memory hardware configuration pins. Memory parameters are set through a
group of registers in Region 0. These parameters are described in detail in the Permedia3
Reference Guide, chapter 9 (Memory Systems) including register bitfields and sample
configurations. The primary registers are LocalMemCaps and LocalMemControl.
LocalMemCaps is show below.

LocalMemCaps

Name Type Offset Format
LocalMemCaps Memory Control — 0x1018 Bitficld
Command register
Bits Name Read | Write | Reset Description
0.3 Column 0O | 0 Address bits to usc for column address.
Address
4.7 RowAddress 0 l 0 Address bits to use for row address.
8.11 BankAddress 0 J 0 Address bits to usc for bank address.
12.15 ChipSelect B - 0 Address bits to use for chip select.
16..19 PageSize O 1 0 Page size (units = full width of memory)
0 = 32 units 1 = 64 units, etc
20..23 RegionSize O | OxH Region size (units = full width of memory)
0 = 32 units 1 = 64 units, etc
24 NoPrecharge O] 0 0 = off 1=o0n
Opt
25 SpecialMode O 1 0 0= off 1=on
Opt
26 "I'woColor O il 0 0 = off 1=on
BlockTHll
27 Combine Banks | [] 0 0= off 1=on
28 NoWriteMask | [H| Ox1 0= off 1=on
7-2 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

Initialization

29

NoBlockIll 0 0x1 0 = off 1=on

]

30

[TalfWidth O Ox1 0 = off 1=on

]

31

NoLookAhead | O O 0x1 0 = off 1=on

Notes:

1. 'T'he ColumnAddress, RowAddress, BankAddress, and ChipSclect ficlds sclect the bits of the
absolute physical address that are to be used to define corresponding parameters. Hach value
follows on from the previous one, so the ChipSelect value starts at ColumnAddress +
RowAddress + BankAddress and continues for ChipSclect bits.

2. 'The PageSize field defines the size of the page, and the RegionSize field defines the size of the
region of memory that each of the four page detectors should be assigned to (so that it is set to

onc quarter of the memory size).

7.14

7.1.5

7.1.6

7.1.7

Internal Video Timing Registers
Video Timing initialization is described in Volume I, chapter 5 (Video System).

Framebuffer Depth

The size of each pixel to be written into the framebuffer is set up using the PixelSize
register. The two bit pixel size encoding field sets the pixel size to be used for merging the
pixel data into the memory. Itis normally set to the same value for all functions, but for
generating texture maps it may be advantageous to use a different write pixel size.

The pixel size is taken from bits 0...1 when bit 31 is 0 or taken from subsequent bites for
local functionality when bit 31 is 1. The two bit pixel size is encoded as follows:

« 0=32bpp

« 1=16bpp

e 2=8bpp

During readback bits 0...17 and 31 return values as loaded and bits 18...30 return zero.

Screen Width

The visible screen width depends on the framebuffer configuration, screen clipping
dimensions and RAMDAC setup. Framebuffer configuration is described in Volume I,
section 3.5.1 (Framebuffer Dimensions and Depth).

Screen Clipping Region
Permedia3 supports a screen scissor clip which should be set at system initialization, and
a user scissor clip which should initially be disabled. Assuming that the relevant

framebuffer registers6 are set appropriately (see the P4 Programmer’s Guide Volume I,
chapter 4, “Buffer and Cache Management”) then setting the screen clip prevents writing

6 Framcbuffer and Tocalbuffer memory is defined using source and destination read and write basc addresscs, offscts and
widths for various formats and layouts. ScreenSize will then be a subset of the memory allocated to the buffers..

3Dlabs

Proprietary and Confidential 7-3

Initialization

Permedia3 Programmer’s Guide Volume Il

outside framebuffer memory. The following example would be appropriate for a resolution
of 1024 by 768 pixels:

screenSi ze. X = 1024

screenSi ze.Y = 768

ScreenSi ze(ScreenSi ze)

sci ssor Mode. ScreenSci ssor Enabl e = Per medi a3_ENABLE
sci ssor Mode. User Sci ssor Enabl e = Per nedi a3_DI SABLE
Sci ssor Mode(Sci ssor Mode)

7.1.8 LocalbufferError! Bookmark not defined. and FramebuffetError!
Bookmark not defined. Configuration

7-4

Permedia3 supports a range of localbuffer configurations. During initialization, fields in the
LBWriteFormat, LBWriteBufferWidth and LBReadFormat registers should be set to
appropriate values which reflect the depth of memory on the board design, and the initial
manner in which it is to be used.

N.B. The width of the Local and Frame buffers is needed toconvert x.y coordinates
into a physical address (= Y * FBWriteBufferWidth[buffer] + X). The frame
buffer height is not needed for this calculation.

For example if the hardware is designed to support a 32 bit localbuffer, and initially this is
to be divided into a 24 bit Depth buffer, 4 bit stencil and 4 GID planes then the registers
must be set as follows (where “[mode]” = either destination or source):

| b[nrode] ReadFor mat . Dept hW dt h =1// 24 bit depth buffer
| b[node] ReadFor mat . St enci | Posi ti on =8 /1l Stencil @24
| b[rode] ReadFor mat . St enci | W dt h =4 /1 4 bit stencil
| b[node] ReadFor nat . G DW dt h =4

| b[node] ReadFor mat . Gl DPosi ti on = 12 /1A D @29
LB[MODE] ReadFor nat (| b[node] ReadFor mat)

| bWiteFormat. DepthWdth = 1 /1 24 bit depth buffer

| bWiteFormat. Stencil Position =8 // Stencil @24
| bWiteFormat. Stenci |l Wdth= 4 /1l 4 bit stencil

| bWiteFormat.d DWdth =4

| bWiteFormat.d DPosition= 12 /G D @29

LBW it eMbde(l bWit eFor mat)

Note that within the limits of the memory depth that is physically available, it is possible to
dynamically change the allocation of the bits, for instance on a per window basis.

Set the framebuffer and localbuffer source and/or destination read units to their default
data sources:

f bSour ceReadMbde. Dat aType = Per nedi a3_FBSour ceDATA
FBSour ceReadMode(f bSouceReadMode)

| bSour ceReadMode. Dat aType = Per medi a3_LBSour ceDEFAULT
LBSour ceReadMode(| bSour ceReadMode)

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

7.1.9

7.1.10

7.2

7.2.1

3Dlabs

Initialization

Host Out Unit

Under some circumstances it is necessary for the host to synchronize with Permedia3.
This is controlled using the Sync command which causes data to be written to the host out
FIFO once all processing has completed. The host out FIFO should normally be initialized
to pass these pieces of data (they can be filtered out).

The host out unit should normally be set to filter out all other output data, otherwise the
host software must regularly poll the output FIFO to keep it drained and prevent it freezing
the pipeline. For example:

filterMde. Depth
filterMde. Stencil
filterMde. Col or
Fi |l t er Mode

Synchroni zati on

Per medi a3_NULL
Per medi a3_NULL
Per medi a3_NULL

Per medi a3_FI LTER_TAG_AND_DATA
/ Al ow syncs through
Per medi a3_NULL

In=1n

filterMde. Statistics
FilterMde(filterMde)

Disabling Specialized Modes

The Graphic ID should normally be initially disabled using the GIDMode FragmentEnable
bit. Refer to chapter 1 - Graphics Programming - for more details.

Window Initialization

Permedia3 supports the concept of a window origin and makes it relatively simple to
implement systems which allow different color formats to coexist in different windows.

Color Format

The Color formatting unit and the Alpha blend unit should be initialized to an appropriate
color format at reset. The units support a variety of different formats - see the Permedia3
Reference Guide, AlphaBlendColor register ColorFormat bitfield and related tables.

For example to render in 3:3:2, 8 bit color format, the following would be needed:

di t her Mbde. Col or For mat = Per medi a3_COLOR_FORMAT_RGB_332_FRONT
Di t her Mode(di t her Mode)

al phaBl endCol or Mode. Col or For mat =
Per medi a3_COLOR_FORVMAT_RGB_332 FRO\IT
Al phaBl endCol or Mode(al phaBl endCol or Mbde)

To enable dithering use the following:
di t her Mode. Xof f set
di t her Mode. Yof f set
di t her Mode. Di t her Enabl e
di t her Mode. Uni t Enabl e
Di t her Mode(di t her Mode)

0
0
Per medi a3_ENABLE
Per medi a3_ENABLE

Proprietary and Confidential 7-5

Initialization

7.2.2

7.2.3

7.2.4

7-6

Permedia3 Programmer’s Guide Volume Il

Note: The color formatting unit is normally always enabled even if dithering itself is
not. This is because the unit handles color formatting as well as the dithering
operation.

Setting the Window Address and Origin

Permedia3 supports the concept of a current window origin. The origin of the window can
be specified either as being in the Top Left or Bottom Left corner and (for Framebuffer
functions) one of four destination buffers. This allows the user to pick the most appropriate
coordinate system to use; for OpenGL it would typically be bottom left, whereas for an X
windows implementation it would be Top Left. Thus for OpenGL set:
f bDest ReadMode. Ori gi n[1] =Per nedi a3_BOTTOM LEFT_W NDOW ORI G N
FBDest ReadMbde(f bDest ReadMbde)

| bDest ReadMbde. Ori gi n[1] =Per medi a3_BOTTOM LEFT_W NDOW ORI G N
LBDest ReadMbde(| bDest ReadMode)

The window dimensions for clipping are set in the scissor unit. The ScissorMinXY register
holds the minimum XY scissor coordinate - i.e. the rectangle corner closest to the screen
origin. This information usually is provided by the window system. It needs updating if the
window moves. As an example if the position of the window is (200, 600 to 480,960)
(using a bottom left coordinate system), the clipping coordinate is specified as follows:

Sci ssor M nXY = 200, 600

Sci ssor MaxXY = 480, 960
To set the buffer origin using the BufferAddress and BufferOffset registers see P10
Programmer’s Guide Volume 1, “Buffer and Cache Management”. Unpatched addresses
can be held using only the BufferAddress register(s). Patched address offsets must be
held in the BufferOffset registers to convert the absolute memory address into a scree-
relative address which can be used for patching.

Writemasks

Normally both the hardware (if present) and the software writemasks are initially set to
make all bitplanes writeable:

FBSof t war eW i t eMask(Per medi a3_ALL_WRI TEMASKS_SET)

FBHar dwar eW i t eMask(Per nedi a3_ALL_WRI TEMASKS_SET)

See Chapter 10, Framebuffer Writemasks, for more information.

Enabling Writing

Which buffers are enabled at any given time is window specific and should be considered
for performance reasons. Performance will be improved if unnecessary reads from, and
writes to, buffers are disabled. For example if the current rendering does not use depth,
stencil, or pixel ownership testing, then reading and writing to the localbuffer may be
disabled. The following example initializes the buffers to allow Z buffering and alpha

blending:
fbWiteMde. WiteEnabl e = Per medi a3_ENABLE
FBW it eMbde(fbWiteMde)
| bWiteMbde. Wi teEnabl e = Per medi a3_ENABLE

LBW it eMode(l bWi t eMbde)

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

Initialization
| bSour ceReadMode. Enabl e = Per medi a3_DI SABLE
| bDest ReadMbde. Enabl e = Per medi a3_ENABLE
LBSour ceReadMode(| bSour ceReadMbde)
LBDest ReadMbde(| bDest ReadMode)
f bSour ceReadMbde. ReadEnabl e = Per medi a3_DI SABLE
f bDest ReadMbde. ReadEnabl e = Per medi a3_ENABLE
FBDest ReadMbde(f bDest ReadMbde)
Note: to use software writemasking, the FBDestReadMode register's ReadEnable

field needs to be set if the writemask is set to other than all 1's.

7.3 Application Initialization

While an application is running it may dynamically use features of Permedia3 such as
depth buffering, alpha blending, logical operations, etc. Initially, however, it is
recommended that the respective units be disabled to ensure they are in a known state:

areaSti ppl eMode. Enabl e = Per medi a3_DI SABLE
AreaSti ppl eMode(ar eaSti ppl eMbde)

Il ineStippl eMbde. Sti ppl eEnabl e =Per medi a3_DI SABLE

Li neSti ppl eMbde(lineSti ppl eMbde) ;

rout er Mode. Sequence = Per medi a3_SET
Rout er Mode(r out er Mode) /1Set to skip texture since
stenci|l and depth di sabl ed//

stenci | Mode. Uni t Enabl e = Per medi a3_DI SABLE
St enci | Mode(st enci | Mode)

dept hMbde. Enabl e = Per medi a3_DI SABLE
Dept hMode(dept hivbde)

col or DDAMode. Enabl e = Per medi a3_DI SABLE
Col or DDAMode(col or DDAMbde)

t ext ur eCoor dMbde. Enabl e = Per medi a3_DI SABLE
Text ur eCoor dvbde(t ext ur eCoor dvbde)

t ext ur el ndexMode. Enabl e = Per medi a3_DI SABLE

Text ur el ndexMode(t ext ur el ndexMbde)
t ext ur eReadMbde. Enabl e
t ext ur eReadMode(t ext ur eReadMbde)

Per medi a3_DI SABLE

Text ur eConposi t eCol or Mode. Enabl e =Per medi a3_DI SABLE
Text ur eConposi t eCol or Mode(Text ur eCol or Mode)
f ogMbde. Enabl e = Per medi a3_DI SABLE

FogMbde(f oghbde)

anti al i asMbde. Enabl e

Anti al i asMbde(anti al i ashbde)
al phaTest Mode. Enabl e

Al phaTest Mbde(al phaTest Mode)
al phaBl endAl phaMbde. Enabl e =Per medi a3_DI SABLE

Al phaBl endAl phaMbde(al phaBl endAl phaMbde)

al phaBl endCol or Mode. Enabl e =Per medi a3_DI SABLE

Al phaBl endCol or Mode(al phaBl endCol or Mbde)

| ogi cal OpMode. Enabl e = Per medi a3_DI SABLE
Logi cal OpMode(| ogi cal OQpMbde)

Per medi a3_DI SABLE

Per medi a3_DI SABLE

3Dlabs Proprietary and Confidential 7-7

Permedia3 Programmer’s Guide Volume Il

Performance Tips

13

Performance Tips

8.1

3D/abs

The following is a list of software programming tips and techniques which can be applied to
maximize Permedia3 performance. Many of these are debug aids and the importance of
effective debug techniques cannot be overemphasised:

As soon as we started programming, we found to our surprise that it wasn't as easy to get
programs right as we had thought. Debugging had to be discovered. | can remember the
exact instant when | realized that a large part of my life from then on was going to be
spent in finding mistakesin my own programs.

- Maurice Wilkes discovers debugging, 1949

The list is intended to be suggestive only and refers back to the Permedia3 Reference
Guide and earlier chapters of the Programmers Guide.

« Using Block Writes - e.g. for clears

- Fast double buffering in a window

- Disable FB reads-per-pixel if they are not required

« Incrementing addresses when writing to the FIFO to enable PCI burst transfers
« Using PCI Disconnect under PIO

« Using bus mastership (i.e. DMA)

« Improving DMA bus bandwidth utilization using the indexed FIFO modes

« Disabling units that are not in use (e.g. Framebuffer reads)

« Use of the extent register to minimize the area in the localbuffer and framebuffer that
needs to be cleared

« Use of the Permedia3 graphics pipeline in preference to the framebuffer (and/or
localbuffer) bypass when possible

« Loading registers in unit order (i.e. Rasterizer first - Host Out last)
« Avoiding unnecessary register updates
« Miscellaneous debug and generic graphics tips

Block Writes

Permedia3 boards are equipped with either SGRAM that supports block writes or SDRAM
which does not. This allows up to 32 pixels at a time to be filled with a constant color by a
single framebuffer write access. This can lead to roughly a 32fold increase in the speed of,
for instance, clearing a large area of the framebuffer.

Proprietary and Confidential 8-1

Performance Tips

6.4

8.2

6.5

8-2

Permedia3 Programmer’s Guide Volume Il

While this technique is most useful when clearing the framebuffer, it can be used to fill any
trapezoid. See volume I, section 4.3.3 - Block Writes.

Fast double buffering in a window

Double buffering is a technique used to achieve visually smooth animation, by rendering a
scene to an offscreen buffer, before quickly displaying it.

Permedia3 board designs can readily support a variety of double buffering mechanisms
depending on the memory configuration and LUT-DAC used, including:

. BLI'

. Full Screen
Note: The best results can often be achieved by combining double buffering
techniques.

Disable FB Reads per pixel if not required

The AlphaFiltering bit in FBDestReadMode can reduce unnecessary FB reads. When set,
it compares the fragment’s alpha value and if it is equal to the AlphaReference value (held
in FBReadEnables) then no read is done. This saves memory bandwidth when the
destination color doesn't contribute to the fragment's color during blending.

Improving PCI bus bandwidth for Programmed 1/0 and DMA

Writing data values into the memory mapped registers is appropriate for primitives which
require few set-up parameters such as 2D lines.

For more complex primitives such as Gouraud shaded triangles where a significant
number of registers must be loaded for each primitive, it may be more efficient to write
directly to the FIFO input.

The advantage of this mechanism is that it is then possible to use DMA burst transfers.

The disadvantage is that both the address of the register and the data value to be loaded
must be written, apparently doubling the amount of data to be loaded.

However, to improve DMA bus bandwidth utilization, the registers have been grouped into
blocks which frequently all need to be updated together, and an indexed addressing mode
is supported which allows a single "address" to be loaded, followed by the data for a whole
set of registers.

An additional mode is supported which allows a large number of data values to be loaded
to the same register. This is useful for image downloads.

It may also be possible to reduce DMA overhead by re-using DMA buffers and vertex
buffers. The HostInID register can be used to mark any point in the command stream so
that the use of index and vertex buffers can be monitored. This register is loaded with an
ID field; like the DMA address register, which can be read at any time to check the
progress of the command stream.

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

6.6

Performance Tips

PCI burst transfers under Programmed 1/O

PCI bus burst transfers typically allow up to four times the bandwidth of individual
transfers.

However burst transfers are only initiated on the PCI bus when successive addresses are
being written to (i.e. the byte address is incremented by 4). To facilitate the use of burst
transfers when using programmed I/O to load the Permedia3 FIFOs, Permedia3 multiply
maps the FIFO input register throughout the range:

0x00002000 to OxO00002FFF in region 0O

6.7

6.8

6.9

3D/abs

Thus when data is being loaded into the FIFO a software loop should be written which
starts by writing the first data item at the lower extreme of this address range, and works
towards the upper.

Using PCI Disconnect Under Programmed I/O

The PCI bus protocol incorporates a feature known as PCI Disconnect which is supported
by Permedia3. Once Permedia3 is in this mode, if the host processor attempts to write to
the full FIFO then instead of the write being lost, Permedia3 asserts PCI Disconnect which
forces the host processor to retry the write cycle until it succeeds.

This feature allows faster download of data to Permedia3 since the host need not poll the
INFIFOSpace register. However it should be used carefully because the bus is then
effectively hogged by the host processor until Permedia3 frees up an entry in its FIFO.

Using Bus Mastership (DMA)

Most Permedia3 boards support PCI bus mastership, allowing the on-board DMA of
Permedia3 to be used to copy data from host memory into permedia3 FIFO.

Bus mastership mode is asserted in the CFGCommand register using bit 2,
BusMasterEnable.

The use of PCI bus mastership has a number of benefits:

* PCI bus bandwidth utilization is generally much improved. Permedia3 has been measured
achicving transfer rates of up to 30-40MBytes/scc with a fast host slave (P90 Neptune chipset).

* PCI bus bandwidth is further improved because the driver software no longer needs to poll the
HIFO flags to find how many entries are empty, before loading it.

* Overall system performance may benefit through increased parallelism between Permedia3 and
the host, as the host can often perform useful work preparing the next DMA buffer once it has

initiatcd onc IDMA transfer.
Disabling units not in use

As a general rule any units within Permedia3 which are not actively in use for the current
rendering should be disabled. Each unit has a bit in a control register for this purpose. This
will maximize pixel throughput in the graphics core.

In particular it is important to check that unnecessary reads of the localbuffer are not taking
place. For instance it is perfectly possible to set up the localbuffer read unit such that
Permedia3 reads per pixel information (such as Z, stencil and GID data) which is then

Proprietary and Confidential 8-3

Performance Tips

6.10

6.11

6.12

6.13

6.14

8-4

Permedia3 Programmer’s Guide Volume Il

discarded. The effect will be the same visually, but the cost in performance of making the
memory accesses will be very high.

Similar comments apply for the framebuffer read unit which again should only be enabled
to read pixel data when it is essential.

Note Permedia3 boards typically support hardware writemasks and these should
be used in preference to the software writemasks.

Clearing the localbuffer & framebuffer

Permedia3 can be instructed in the StatisticsMode StatsType register field to maintain a
record of the minimum bounding box (MinRegion and MaxRegion registers) that has
been rendered to, in a given period. This can be used to limit the area that must be
cleared down using span fill.

For further details see chapter 11, Host Out, on Extent Checking

Use of the Framebuffer (or Localbuffer) Bypass

Whenever possible rendering should be done through the Permedia3 graphics pipeline.
This is because reading and writing the framebuffer (or localbuffer) using the bypass is

relatively slow. In some cases performance may even be improved if a small area of the
framebuffer (and/or localbuffer) is uploaded through the graphics pipeline into a bitmap,
rendered to, and then downloaded again through the graphics pipeline.

Loading Registers in Unit Order

To maximize performance, the control registers for the next primitive should be loaded into
the Permedia3 FIFO in unit order. Thus the registers associated with the Rasterizer unit
should be loaded first, then Scissor unit, Stipple unit, Color DDA, and so on until the last
unit to be loaded is the Host Out unit (if necessary). Then finally the relevant command
register should be loaded.

For the order of the units refer to chapter 1, Error! Reference source not found..

Avoiding Unnecessary Register Updates

Permedia3 control registers retain their value between one primitive and the next. Thus it
is not necessary to reload registers that are unchanged between primitives. e.g. the dY
register usually is set to either +1 or -1 (except when antialiasing).

In addition calculations of register values can often be shared across primitives, for
instance between edges in adjacent polygons in meshes.

Hardware and Software Context Dumps

Permedia3 supports ContextDump and ContextRestore commands and a
StatisticsMode register, with enables for extent checking and picking set in the
FilterMode register. These allow the selection of active and passive fragments by screen
area and other parameters at specific points in the render process, and state switching to
halt and resume graphic processing while examining the collected data.

Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il
Performance Tips

The decision to use hardware context management may depend on the software regime
being supported. In the D3D environment it may be more effective to save all the context
state in software copies. When a context is switched to, simply set up the chip again. This
avoids the need to wait for a Context Dump before switching away from a context and
takes advantage of D3D’s capabilities. However the hardware-assisted route is generally
preferred by OGL developers.

6.15 Use the Memory Scratchpad Registers

By keeping track of which primitives have finished rendering it is often possible to avoid
waiting for chip syncs. When applications do procedural tetxuring they need to change the
texture every frame. Normally host access to a texture that has been rendered with
requires a chip-sync. Using scratchpad memory to keep track of primitives which have
finished rendering allows the driver to confirm that the last primitive to use that texture has
indeed completed and the application can now access the texture immediately with no
sync. As long as applications only want to change the texture some time after they
rendered with it (the best time is just before rendering the new version) then chip-syncs
can be almost entirely avoided.

The same approach can be used when the application is changing render target and doing
a render-to-texture or blit-to-texture. Similarly, when the driver is texture swapping, it can
tell which textures it can and can't touch using this tracking information.

6.16 Miscellaneous Tips

The following is a set of miscellaneous tips that are not Permedia3 specific but well worth

using.

* Avoid polling for Vblank whenever possible but if you have to poll, consider whether your
application 1s taking just longer than an integer number of Vblank intervals to draw a frame -
slightly simplifying the frame to make it just under an integer multiple can dramatically improve
performance.

* Another way of looking at the same problem is, if you remove your SwapBuffers() calls, does your
application render many more frames per secondr If so, you might be spending a lot of time
waiting for buffer swaps, and you should tunc your app so that it draws just cnough to fit in one
less frame time.

* When using DMA it may be best to flush the DMA buffer to the chip after entering a large
primitive in the buffer (c.g. screen clear), so that the chip is doing uscful work while further
primitives are being prepared on the host.

* Minimize the use of the Sync command.

* Docs making your window smaller cause things to speed up? 1f so, you're probably fill-limited
(bottlenecked by filling the pixels in the window). Speed things up by reducing the depth
complexity of your scene or by using simpler drawing operations wherever possible (e.g., avoiding
depth-buffering for the background or ground planc).

* Does making your window smaller have no effect on the time it takes to draw a frame? If so,
you're probably geometry-limited (bottlenecked by transformations, clipping, or lighting) or host-
limited.

3D/abs Proprietary and Confidential 8-5

Performance Tips
Permedia3 Programmer’s Guide Volume Il

* Mecasure the time it takes your application to draw a frame. Now comment out all the drawing
calls, and measure again. If most of the elapsed time per frame is spent doing things other that
drawing, your application is probably host-limited rather than geometry-limited.

* Ifyou're geometry-limited, you can speed things up by using simpler models with fewer vertices,
by reducing the amount of clipped geometry, by using fewer light sources, etc. If you're host-
limited you should use profiling tools to figure out where your application is spending its time and

then tune thosc arcas.

8-6 Proprietary and Confidential 3Dlabs

Permedia3 Programmer’s Guide Volume Il

Appendices

14

Appendices

6.17 Pseudocode Definitions

3D/abs

In many areas of the document we use fragments of pseudocode to describe register
loading. These are based on a C interface to Permedia3 in which each 32 bit register is
represented as a C structure, potentially split into a series of bit fields.

Where in an example only a subset of the bit fields in a register are set, it is assumed
either that a software copy of the register is being modified, or that the current contents of
the register have first been read back. This style has been chosen for clarity; there are
often more efficient strategies.

The constant definitions and register bit field definitions are based upon those used in the
3Dlabs driver software. Sources including header files are available under source license
agreement.

Loading of a Permedia3 register is expressed as:
regi st er-nane(val ue)

When writing directly to the register file (i.e. to a FIFO) this would be implemented by
writing “value” to the mapped-in address of the register called “register-name”.

Fragmentary examples are not in strict C syntax, a typical example is:

/1 Sanple code to rasterize a 10x10 rectangle at the
/1 framebuffer origin.

St ar t XDomn(0) /1 Start dom nant edge
Start XSub(1<<16)// Start of subordinate
dXDon{ 0x0)
dXSub(0x0)
Count (OxA)
YSt art (0)
dY(1<<16)

/1 Set-up to render an aliased trapezoid.
render. AreaSti ppl eEnabl e = Pernedi a3_DI SABLE
render. Li neSti ppl eEnabl e = Pernedi a3_DI SABLE
render.PrimtiveType = Pernmedi a3_TRAPEZO D
render. Fast Fi | | Enabl e = Pernedi a3_DI SABLE
render. FastFillIncrement = don't care

render. UsePoi nt Tabl e = Pernedi a3_FALSE
render. Anti al i asEnabl e = Per nedi a3_DI SABLE
render. AntialiasingQuality = don’t care
render. Reset Li neSti ppl e = Pernmedi a3_FALSE
render. SyncOnBi t Mask = Pernmedi a3_FALSE
render. SyncOnHost Dat a = Per nedi a3_FALSE

Proprietary and Confidential 9-1

Appendices

9.1

9.11

9-2

Permedia3 Programmer’s Guide Volume Il

Render (render) // Render the rectangle

Code is shown in roman face and comments are C++ style ’// indicating that the rest of the
line is a comment. Any statement which ends in parenthesis is a register update, other
statements will generally be variable assignments.

A variable, say render, is of a type associated with the register being modified. This will
usually be clear by the context and will not usually be declared as such. All the type
definitions are in the header files. The values assigned to a register will be either a variable
as described above, a macro i.e. Permedia3_TRUE , as found in the headers, or an
immediate constant in C style format (e.g. 0x45). In registers with several fields some of
which are not relevant to a particular example, the field can be ignored completely or set to
don't care. In some registers values for fields which need to be set are not readily
available. These are typically set as appropriate.

For some fragments we simply give a list of register updates e.qg.:
/1 Sample code to rasterize a rectangle

St art XDom() /1 Start domi nant edge
St art XSub() /1 Start of subordinate
dXbon()

dXSub()

Count ()

YStart ()

dy()

/1 Set-up to render an aliased trapezoid.

Render () /1 Render the rectangle

This technique is used to give a feel for the registers involved in a particular operation and
where a detailed treatment is not warranted.
To take the address of a register, the name is used, thus this example stores the address
of the StartXDom register in the buffer pointed to by the variable buf and increments the
pointer:

*puf ++ = Start XDom
To test the value of a register the register name is dereferenced using the C ™' operator as
for instance in this example which tests for the completion of a DMA operation:

whil e(*DMACount '=0) ;

Interpolation Calculation

Color Gradient Interpolation
To draw from left to right, top to bottom, the color gradients (or deltas) required are:

fa o R dldhnz = G- By z = Sl
3—-F z— 1N z—1

dBdyz =

Proprietary and Confidential 3D/ahs

Permedia3 Programmer’s Guide Volume Il

9.1.2

3D/abs

Appendices
And from the plane equation:

dRdzx = (R Ry x 2T py gy E1T 12N
[[

dGdx = {(Gh—- OB) x@} —{(Ga - () x@}

dBdx = {(E1— B3} XM} - {(B2- B3) XM}
£ £

where, to be independent of the order the vertices are provided:
c=abs{{N1-Xa)x(Fa-Fa) - {Xo- X3) = (F1- Fa)}

These values allow the color of each fragment in the triangle to be determined by linear
interpolation. For example, to calculate the red component color value of a fragment at
Xn,Ym:

e add dRdy13, for each scanline between Y1 and Yn, to R1, then
« add dRdx for each fragment along scanline Yn from the left edge to Xn.

The example chosen has the ‘knee’ i.e. vertex 2, on the right hand side, and drawing is
from left to right. If the knee were on the left side (or drawing was from right to left), then
the Y deltas for both the subordinate sides would be needed to interpolate the start values
for each color component (and the depth value) on each scanline. For this reason
Permedia3 always draws triangles starting from the dominant edge and towards the
subordinate edges. For the example triangle, this means left to right.

Register Set Up for Color Interpolation

For the example triangle, the Permedia3 registers must be set as follows for color
interpolation. Note color values are in 24 bit, fixed point 2’'s complement 9.15 format.

// Load the color start and delta valucs to draw

// a triangle

Rstart (Rq)

Gstart (Gq)

Bstart (B1)

dRdyDom (dRdyq3) // 'T'o walk up the dominant edge
dGdylDom (dGdyy 3)

dBdyDom (dBdyq3)

dRdx (dRdx) // 'I'o walk along the scanline
dGdx (dGdx)

dBdx (dBdx)

Proprietary and Confidential 9-3

Appendices
Permedia3 Programmer’s Guide Volume Il

9.1.3 Calculating Depth Gradient Values

To draw from left to right and top to bottom, the depth gradients (or deltas) required for
interpolation are:

Z3— 71
¥s— 1

And from the plane equation:

dZdx = (21 -z x 221
[

dZdya =

) - (Z2-Z5) x@}

where, as before:

c=abs{{N1-X)x(Fa-Fa) - (Xo— X3) x (F1- Fal}

The divisor, shown here as c, is the same as for color gradient values. The two deltas,
dZdy13 and dZdx allow the Z value of each fragment in the triangle to be determined by
linear interpolation as was described for the color interpolation above.

9-4 Proprietary and Confidential 3D/ahs

Permedia3 Programmer’s Guide Volume Il

9.2

3D/abs

Appendices

Appendix F. Accurate Rendering

This appendix describes how to calculate the various parameters needed to define a
Gouraud shaded triangle. This topic is covered in section 1.1.2, however in the interest of
simplicity some of the finer details were glossed over. The quality of the rasterization and
shading suffers where these fine details are not included and will give rise to 'stitch marks’
and 'bright edge’ artifacts. The main area where simplifications were made earlier relates
to the fact that vertices are not, in general, coincident with pixel centers so sub pixel
corrections are necessary. The initial values being interpolated (RGB for example) need to
be adjusted to account for this. Permedia3 does the necessary X corrections when moving
from scan line to scan line when the SubPixelCorrection bit is set, but the initial Y
correction must be done in software.

Consider a sample triangle, highly magnified to emphasize the sub pixel corrections
needed:
TWertex ©

-+ + +
Sﬁml& poit at
L] Ceriie

+ erx:-' 4 \"‘+

VRN

-:1‘1'E|I] fb—"]

f———""] Yurkx E

T ansh I
it 33 3

The vertices are sorted into Y order and the dominant edge is AC. Scan conversion will
start at vertex A and proceed upwards. The origin is bottom left.

The usual parameters to interpolate (denoted P in the diagram) across the triangle would
include color (R, G, B and alpha), depth (2), fog (F), and texture (S, T, Q, Ks and Kd). The
source code to set up Permedia3 to achieve the best quality rendering will only calculate
the parameters for RGBA and Z to keep the size of the code down.

#i ncl ude <stdio. h>
#i ncl ude <float.h>

Il A simple macro which just prints out the register name and value.
Il Replace this with some code to write to Permedia3.

#define LD_Permedia3_REG(name, value) \
printf ("%s = %08x\n", #name, value)

/I This software is part of the application note which describes
Proprietary and Confidential 9-5

Appendices

9-6

Permedia3 Programmer’s Guide Volume Il

Il how Permedia3 is set up to get the best quality rendering. Particular

Il care is taken to avoid cracks, stitch marks and bright edge artifacts

/I from occurring. The OpenGL rasterization rules are used.

/I The software has not been written with maximum performance in mind,
I/ but as a clear, well documented example covering the nuances

I/ which are easily overlooked.

Il Simple vertex structure used to interface parameters to the RenderTriangle
/I function.

typedef struct { float x,vy, z; Il'in device coords
float r,g,b,a; /lintherange0.0to 1.0
} Vertex;

I Prototypes.

long IntToFixedPoint16 (long i);

long FloatToColor (float f);

long FloatToCoordinate (float f);

void FloatToDepth (float f, long *zi, long *zf);

void RenderTriangle (Vertex *v0, Vertex *v1, Vertex *v2);

I/ Defines some simple function to convert from floating point numbers
I to various fixed point formats. These can be inlined if necessary.

long IntToFixedPoint16 (long i)

return i << 16;

}

Il These functions perform the conversion from floating point numbers

I to the various fixed point format numbers required in Permedia3. They
I/ are implemented as simple operations on the binary representation

Il of |IEEE single precision floating point number so the floating

/I point rounding mode doesn't need to be set up first and in many

Il cases they are faster than using the built in conversion functions,

Il especially when the range checking and clamping is taken into account.

Il Format of |EEE single-precision (32-bit) real number.
#define F_BIAS 127
#define F_SIGN_BIT 31

#define F_EXPONENT_BITS 23
#define F_FRACTION_BITS 0

/I Convert 32-bit floating-point value to 9.15 fixed-point value used
Il for the color parameters. The input range is assumed to be 0.0

Proprietary and Confidential 3D/ahs

Permedia3 Programmer’s Guide Volume Il
Appendices

/l't0 1.0. The algorithm is:

II'/f exponent < -15 then return (0x00000000), otherwise

II'if exponent < 8 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
Il return ((s == 1) ? 0xff800000 : 0x007fffff).

long FloatToColor (float fi)

{
long f=*((long *) &fi);
long sign;
unsigned char exponent;

sign = (f>> F_SIGN_BIT);
exponent = (unsigned char)(f >> F_EXPONENT _BITS);
if (exponent < (F_BIAS-15))

return (0);
if (exponent < (F_BIAS+8))
{

f = ((unsigned long)((f | 0x00800000) << 8)

>> ((F_BIAS+16) - exponent));
if (sign < 0)
f=-f
return (f);

}
return (0x007fffff ~ sign);

/I Convert 32-bit floating-point value to 16.16 fixed-point value used
I for the rasterizer parameters.

I1'if exponent < 0 then return (0x00000000), otherwise

Iif exponent < 31 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
Il return ((s == 1) ? 0x80000000 : Ox7ffffff).

long FloatToCoordinate (float fi)

{
long f=*((long *) &fi);
long sign;
unsigned char exponent;
long res;

sign = f>>F_SIGN_BIT;
exponent = (unsigned char) (f >> F_EXPONENT_BITS);
if (exponent < (F_BIAS-16))

return (0);
if (exponent < (F_BIAS+15))
{

res = ((unsigned long)((f | 0x00800000) << 8)

>> ((F_BIAS+15) - exponent));

3DV/abs Proprietary and Confidential 9-7

Appendices

9-8

}

if (sign < 0)
res = -res;
return (res);

return (Ox7fffffff sign);

/I Convert 32-bit floating-point value to 24.16 fixed-point value as

Il used by the Z values. Note that this assumes a 24 bit Z buffer.

I If exponent < -16 then return (0x0000000000000000), otherwise
II'if CLAMP_24 16 is defined and is non-zero:

II'if exponent < 23 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
Il return ((s == 1) ? 0xff80000000000000 : 0x007fffffffff0000).

Il otherwise:

Il return (-1¥%(s) * 1.f * 2%*(e - 127)).

void FloatToDepth (float fi, long *zi, long *zf)

{

long f=*((long *) &fi);

long sign;
unsigned char exponent;
long resh;

unsigned long resl;

sign = (f>> F_SIGN_BIT);

exponent = (unsigned char)(f >> F_EXPONENT _BITS);
if (exponent < (F_BIAS-16))

{

*7i=0;
*zf=0;
return;

}
if (exponent < (F_BIAS+23))

f=((f| 0x00800000) << 8);
if (exponent < (F_BIAS+0))

{
resh =0;
res| = ((unsigned long) f >> ((F_BIAS-1) - exponent));
}
else
{

unsigned char shift;

shift = ((F_BIAS+31) - exponent); // 8 <= shift < 32
resh = ((unsigned long) f >> shift);

resl = (f << (31 - shift)); I/ shifts >= 32 undefined
resl <<=1; 1l 'so we must shift twice

Proprietary and Confidential

Permedia3 Programmer’s Guide Volume Il

3D/ahs

Permedia3 Programmer’s Guide Volume Il

}

}
if (sign < 0)
{

unsigned long old_resl;

resl = ~resl;
resh = ~resh;
old_resl =resl;
resl += 0x00010000;
if (resl <old_resl) // overflow
++resh;
}

}

else

resh = (0x007fffff * sign);
res| = (0xffff0000 * sign);

1

res| &= 0xffff0000;
*7i = resh;

*zf = resl;

#define SAME 0
#define REVERSED ~SAME

#define ORDER(v0, v1, v2, order) {a = v0; b = v1; ¢ = v2; windingOrder = order;}

void RenderTriangle (Vertex *v0, Vertex *v1, Vertex *v2)

{

3D/abs

float dxAB, dyAB, dxBC, dyBC, dxAC, dyAC; // Diff in x,y for each edge.
float drAC, dgAC, dbAC, daAC, dzAC; /I Diff in rghz for dominant edge
float drBC, dgBC, dbBC, daBC, dzBC; /I Diff in rghz for the BC edge.

float dxdyAC, dxdyAB, dxdyBC; /I Edge gradients for unit
Il'setiny

float drdxdy, dgdxdy, dbdxdy;

float dadxdy, dzdxdy;

float drdx, dgdx, dbdx, dadx, dzdx; // Gradients for unit step in x.

float r0, g0, b0, a0, z0; /I Start values

float area, oneOverArea, 1, t2;

float oneOverdyAC;

Vertex *a, *b, *c; Il Sorted vertices.

long xDomFixed, xSubFixed;

float dyErr, yBottom, yTop;

long iyBottom, iyTop;

int windingOrder; /I Not used.

long zi, zf;

long temp;

Il Sort vertices into ascending Y order. *a points to the vertex with the

Proprietary and Confidential

Appendices

9-9

Appendices

9-10

Permedia3 Programmer’s Guide Volume Il

Il lowest y value. Compare winding order of the pre and post sorted vertices
/I'and set winding order flag as appropriate (this is only needed if culling
/I based on the winding order is to be done).

if (vO->y < v1->y)
{

if (v1->y <v2->y)
ORDER (v0, v1, v2, SAME)
else
if (VO->y < v2->y)
ORDER (v0, v2, v1, REVERSED)
else
ORDER (v2, v0, v1, SAME)
}

else

{
if (v1->y <v2->y)
{

if (VO->y < v2->Y)
ORDER (v1, V0, v2, REVERSED)
else
ORDER (v1, v2, v0, SAME)
1

else
ORDER (v2, v1, v0, REVERSED)
}

I Compute signed area of the triangle.

/I Form vectors for two edges of the triangle.
dxAC = a->X - ¢->X;

dxBC = b->x - ¢->X;

dyAC = a->y - ¢c->y;

dyBC = b->y - ¢c->y;

/I Form the cross product of the two edges.
area = dxAC * dyBC - dxBC * dyAC;

if (area == 0.0)
return; Il Reject zero area triangles.

Il A negative area just means the order of the vertices, after sorting, was
Il clockwise. Note this may be different from original input order.
if (area < 0.0)

area = -area; I Make positive.

/I The dx/dy value (change in x for unit change in y) are needed for

/I each edge so the rasterizer can compute the new left and right hand
/I'x coordinates as it steps from one scan line to the next. Horizontal

Il or near horizontal edges will have very large gradients but these will

Proprietary and Confidential 3D/ahs

Permedia3 Programmer’s Guide Volume Il

3D/abs

I/ be handled later. Values for AC and BC have already been calculated so
/I'just do the remaining edge.

dxAB = a->x - b->x;
dyAB = a->y - b->y;

/I The dominant edge is always AC (i.e. the edge with the maximum Y extent).

/I Compute the change in rghaz along this edge for unit change in .
oneOverdyAC = 1.0/ dyAC;

I/ Differences along edge AC
drAC = a->r - ¢->r;

dgAC = a->g - c->g;

dbAC = a->b - c->b;

daAC = a->a - c->3;

dzAC = a->z - ¢->z,

I/ Gradient along edge AC for each parameter.
drdxdy = drAC * oneOverdyAC;

dgdxdy = dgAC * oneOverdyAC;

dbdxdy = dbAC * oneOverdyAC;

dadxdy = daAC * oneOverdyAC;

dzdxdy = dzAC * oneOverdyAC;

dxdyAC = dxAC * oneOverdyAC;

/I Difference along edge BC
drBC = b->r - ¢->r;

dgBC = b->g - ¢->g;

dbBC =b->b - ¢->b;

daBC =b->a - c->a;

dzBC = b->z - ¢->z;

I Compute the change in rgbaz when taking unit steps in x.
oneOverArea = 1.0/ areg;

t1 = dyAC * oneOverArea;
t2 = dyBC * oneOverAreg;

drdx = drAC *t2 - drBC * t1,

dgdx = dgAC * 12 - dgBC * t1;
dbdx = dbAC *t2 - dbBC * t1;
dadx = daAC * 12 - daBC * t1;
dzdx = dzAC *t2 - dzBC * t1;

Il A general triangle will need to be split into two trapezoids for

/I rendering. Either of these trapezoids may have a zero height in
/I which case the triangle has a flat top or bottom. The rasterizer
/I and DDASs are still set up, however the count may be zero.

Proprietary and Confidential

Appendices

9-11

Appendices

Permedia3 Programmer’s Guide Volume Il
I Fill lower trapezoid.
yBottom = a->y;
yTop =b->y;

Il The y coordinates are converted to integer values, taking into
Il account the openGL rules which determine which pixels fall within

I the boundary.

temp = FloatToCoordinate (yBottom); // float to 16.16 fixed point
temp += 0x00007fff; Il'add in nearly a half

iyBottom = temp >> 16; I extract integer part

temp = (int) FloatToCoordinate (yTop); // float to 16.16 fixed point
temp += 0x00007fff; Il'add in nearly a half

iyTop = temp >> 16; Il extract integer part

dyErr = iyBottom + 0.5 - yBottom;

/I Check for the case when AB is a true horizontal edge to prevent a divide

II'by zero.
if (dyAB == 0.0)
dyAB = FLT_MIN; Il set to a very small number.

dxdyAB = dxAB / dyAB;

/I Move the rghaz values at vertex a along the edge AC in proportion
I/'to how far the vertex a is from the pixel center in the y direction

I/ to do the sub pixel adjustment in Y. Permedia3 does the sub pixel
/I adjustment in X automatically, if enabled.

r0 = a->r + dyErr * drdxdy;

g0 = a->g + dyErr * dgdxdy;
b0 = a->b + dyErr * dbdxdy;
a0 = a->a + dyErr * dadxdy;
z0 = a->z + dyErr * dzdxdy;

/I Similarly for the start values for the left and right hand edges.
xDomFixed = FloatToCoordinate (a->x + dyErr * dxdyAC);
XSubFixed = FloatToCoordinate (a->x + dyErr * dxdyAB);

Il Load up Permedia3 with the parameters.

Il Rasterizer. Note that the RasterizerMode is set to add

Il _Permedia3_START_BIAS_ALMOST_HALF to the XDom, XSub and
II'Y Start values to conform to the OpenGL rasterization rules.
LD_Permedia3_REG(StartXDom, xDomFixed);
LD_Permedia3_REG(dXDom. FloatToCoordinate (dxdyAC));
LD_Permedia3_REG(StartXSub, xSubFixed);

Proprietary and Confidential 3D/ahs

Permedia3 Programmer’s Guide Volume Il

3D/abs

Appendices

LD_Permedia3_REG(dXSub, FloatToCoordinate (dxdyAB));
LD_Permedia3_REG(StartY, IntToFixedPoint16 (iyBottom));
LD_Permedia3_REG(dy, IntToFixedPoint16 (1));
LD_Permedia3_REG(Count, (iyTop - iyBottom));

I/ Color DDA.

LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG
LD_Permedia3_REG

Rstart, FloatToColor (r0));

dRdx, FloatToColor (drdx));
dRdyDom, FloatToColor (drdxdy));
Gstart, FloatToColor (g0));

dGdx, FloatToColor (dgdx));
dGdyDom, FloatToColor (dgdxdy));
Bstart, FloatToColor (b0));

dBdx, FloatToColor (dbdx));
dBdyDom, FloatToColor (dbdxdy));
AStart, FloatToColor (a0));

dAdx, FloatToColor (dadx));
dAdyDom, FloatToColor (dadxdy));

—_— A AL AL A A A A A AL

/I Depth DDA.

FloatToDepth (z0, &zi, &zf);
LD_Permedia3_REG(ZStartU, zi);
LD_Permedia3_REG(ZStartL, zf);

FloatToDepth (dzdx, &zi, &zf);
LD_Permedia3_REG(dZdxU, zi);
LD_Permedia3_REG(dzdxL, zf);

FloatToDepth (dzdxdy, &zi, &zf);
LD_Permedia3_REG(dZdyDomU, zi);
LD_Permedia3_REG(dZdyDomL, zf);

/I Render the trapezoid ...
LD_Permedia3_REG(Render, 0x00014041);

II'Fill upper trapezoid.
yBottom = b->y;
yTop = ¢->y;

I The y coordinates are converted to integer values, taking into
Il 'account the openGL rules which determine which pixels fall within

I the boundary.

temp = FloatToCoordinate (yBottom); // float to 16.16 fixed point
temp += 0x00007fff,; /l'add in nearly a half

iyBottom = temp >> 16; Il extract integer part

temp = FloatToCoordinate (yTop); Il float to 16.16 fixed point
temp += 0x00007fff,; /l'add in nearly a half

Proprietary and Confidential 9-13

Appendices

9-14

Permedia3 Programmer’s Guide Volume Il

iyTop = temp >> 16; I extract integer part

/I Find the dyErr value for vertex B so that the start value for x can be
Il corrected.

dyErr = iyBottom + 0.5 - yBottom;

Il Check for the case when BC is a true horizontal edge to prevent a divide

I/ by zero.
if (dyBC == 0.0)
dyBC =FLT_MIN; Il 'set to a very small number.

dxdyBC = (dxBC / dyBC);

/I Set up the rasterizer for the upper trapezoid. All other DDA units

Il can carry on with their parameters as they are walking up the same
I/ edge.

xSubFixed = FloatToCoordinate (b->x + dyErr * dxdyBC);
LD_Permedia3_REG(StartXSub, xSubFixed);
LD_Permedia3_REG(dxSub, FloatToCoordinate (dxdyBC));
LD_Permedia3_REG(ContinueNewSub, (iyTop - iyBottom));

Proprietary and Confidential 3D/ahs

Permedia3 Programmer’s Guide Volume Il

9.3 Glossary

accumulation buffer

active fragment

aliasing

alpha buffer

alpha test

antialiasing

bitblt

block write

command register

context

control register

3D/abs

Glossary

A color buffer of higher resolution than the displayed buffer
(typically 16bits per component for an 8bit per component
display). Typically used to sum the result of rendering several
frames from slightly different viewpoints to achieve motion blur
effects or eliminate aliasing effects.

A fragment which passes all the various culling tests, such as
scissor, depth(2), alpha, etc., is written to/combined with the
corresponding pixel in the framebuffer. See also "fragment” and
"passive fragment".

A phenomena resulting from a rendering style which ignores the
fact that a pixel may not be wholly covered by a primitive, leading
to jagged edges on primitives.

A memory buffer containing the fourth component of a pixel’s
color in addition to Red, Green and Blue. This component is not
displayed, but may be used for instance to control color blending
and antialiasing.

A test used to cull selected fragments from being drawn, based
on a comparison of a fixed value with the alpha value of the
fragment.

A rendering style which weights the color of a pixel by the fraction
of its area that is covered by primitives, leading to reduction or
elimination of jagged edges.

Bit aligned block transfer. Copy of a rectangular array of pixels in
a bitmap from one location to another.

A feature provided in some SGRAM devices which allows multiple pixels
to be set to a given value by a single write. See also fast fill which is an
alternative name for the same feature.

A register which when loaded triggers activity in Permedia3. For instance
the Render command register when loaded will cause Permedia3 to
start rendering the specified primitive with the parameters currently set
up in the control registers.

The state information associated with a particular task. Typically in a
system more than one task will be using Permedia3 to render primitives.
Software on the host must save away the current contents of the
Permedia3 control registers when suspending one task to allow another
to run, and must restore the state when that task is next scheduled to
run.

A register which contains state that dictates how Permedia3 will
execute a command.

Proprietary and Confidential 15

Glossary
culling

DDA

depth (Z) buffer

depth-cueing

dithering

double-buffering

fast fill

fogging

Fast Clear Planes

fragment

framebuffer

Graphic ID (GID)

host

16

Permedia3 Programmer’s Guide Volume Il

The process of eliminating a fragment, object face, or primitive,
so that it is not drawn.

Digital Differential Analyzer. An algorithm for determining the
pixels to draw along a line or polygon edge. Also used to
interpolate linearly varying values such as color and depth.

A memory buffer containing the depth component of a pixel.
Used to, for example, eliminate hidden surfaces.

A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the
background. See also fogging.

A rendering style which increases the perceived range of
displayed colors at the cost of spatial resolution. The technique is
similar to the use of stippled patterns of black and white pixels, to
achieve shades of grey on a black and white display.

A technique for achieving smooth animation, by rendering only to
an undisplayed back buffer, and then swapping the back buffer to
the front once drawing is complete.

A feature provided in SGRAM devices which allows multiple
pixels to be set to a given value by a single write. See also block
write which is an alternative name for the same feature.

A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the
background. See also depth-cueing.

Used to allow higher animation rates by enabling localbuffer pixel
data, such as depth (2), to be cleared down - not required or
supported in Permedia3

A fragment is an object generated as a result of the rasterization
of a primitive. It corresponds to and contains all the components
of a single pixel. If a fragment passes all the various culling tests,
such as scissor, depth(Z), alpha, etc., it will be written
to/combined with the corresponding pixel in the framebuffer.

An area of memory containing the displayable color buffers (front,
back, left, right, overlay, underlay), their (optional) associated
alpha components, and any associated (optional) window control
information. This memory is typically separate from the
localbuffer.

A component of a pixel containing information used for per pixel
clipping.

The processor which controls Permedia3.

Proprietary and Confidential 3D/ahs

Permedia3 Programmer’s Guide Volume Il

localbuffer

passive fragment

pixel

primitive

rasterization

rendering

scissor test

stencil buffer

stipple

task

texel

texture

texture mapping

window control buffer

3D/abs

Glossary

An area of memory which may be used to store the following
non-displayable pixel information: depth(Z), stencil, Graphic ID.

A fragment which fails one or more of the various culling tests,
such as scissor, depth(2), alpha, etc., is nor written to/combined
with the corresponding pixel in the framebuffer. See also
"fragment" and "active fragment".

Picture element. A pixel comprises the bits in all the buffers
(whether stored in the localbuffer or framebuffer), corresponding
to a particular location in the framebuffer.

A geometric object to be rendered. The Permedia3 primitives are
points, lines, trapezoids (including triangles as a subset), and
bitmaps.

The act of converting a point, line, polygon, or bitmap, in device
coordinates, into fragments.

Conversion of primitives in object coordinates into an image.

A means of culling fragments which lie outside the defined
scissor rectangle. The scissor rectangle is defined in device
coordinates.

A buffer used to store information about a pixel which controls
how subsequent stenciled fragments at the same location may
be combined with its current value. Typically used to mask
complex two-dimensional shapes.

A one or two dimensional binary pattern which is used to cull
fragments from being drawn.

A process, or thread on the host which uses the Permedia3
coprocessor. Typically tasks assume that they have sole use of
Permedia3 and rely on a device driver to save and restore their
Permedia3 context, when they are swapped out.

Texture element. An element of an image stored in texture

memory which represents the color of the texture to be applied
(fully or in part) to a corresponding fragment.

An image used to modify the color of fragments during
processing. Often used for instance to achieve high realism in a
scene, with relatively few primitives.

The process of applying a two dimensional image to a primitive.
For instance to apply a wood grain effect to a table.

A buffer containing control bits used by display hardware to
select between multiple hardware LUTSs or display buffers (such

Proprietary and Confidential 17

Glossary
Permedia3 Programmer’s Guide Volume Il

as overlay and underlay) on a per pixel basis. Usually a given

value in the buffer corresponds to a single window on the screen.

A bit pattern used to enable or inhibit the writing of the

writemask
corresponding bits of a fragment'’s color into the framebuffer.

18 Proprietary and Confidential 3D/ahs

Video Unit and RAMDAC

INDEX
AlphaBlend 15, 26, 28 Disabling units not in use 8-3
AlphaBlend Example 35 Dither Example 42
AlphaBlend Unit 25 dithering 16
AlphaBlending 26,28 Dithering 40
alphabuffer 15, 27,41, 15 DitherMode 41, 42
Alphatest 17 DMA
AlphaTest 17 Using the Bus Mastership 8-3
AlphaTest 17 dRdx 9-3
AlphaBlendMode 27,28,31,35 dy 8-4
AlphaTestMode 18 Enabling Writing 7-6
Antialias Application 15 extent checking 6-2
Antiaias Example 17 Extent Checking 6-2
antialiasing 15 Fast double buffering in awindow 8-2
Antidiasing 15,16 fast fill 16
AntialiasM ode 16, 17 FBColor 21,22,6-1
Application Initialization 7-7 FBData 28
block write 15 FBDestReadMode 7-7
Block Writes 81 FBHardwareWriteMask 47
chroma 32 FBReadM ode 21,22,44
Chromal ower 32 FBSoftwareWriteM ask 47
ChromaTestM ode 32 FBWriteData 44
ChromaUpper 32 FBWriteM ode 28
Cl Fogging Equation 12 Filter Mode Example 6-2
Color Format 7-5 Filtering 6-1
Color Format Example FilterMode 6-1, 6-2, 6-3, 6-5
3:3:2 43 Fog 9
8:8:8:8 43 Fog Example 14
Color Format Unit 37 Fog Index Calculation - The Fog DDA 10
Color Index Format Example 43 fogging 16
Color Interpolation 9-3 FogM ode 13,14
command register 15 framebuffer 16
context 15 Framebuffer
control register 15 Bypass 8-4
ddta 9-3,94 Framebuffer 21
depth (Z) buffer 16 Framebuffer Depth 7-3
Depth Gradient 9-4 Framebuffer Read Span Operations 22
depth-cueing 16 Graphic ID 16
dFdx 10 Hardware Writemask Example 48
dFdyDom 10 Hardware Writemasks 47
Disabling Specialized Modes 7-5 High Speed Flat Shaded Rendering 44
9-2 Proprietary and Confidential

GLINT R5 Reference Guide Volume |

3Dlabs

Video Unit and RAMDAC

Host 6-1,7-5
Image Formatting 28
Improving PCI bus bandwidth for Programmed

I/0 and DMA 8-2
Initialization 7-1
Initializing p3 7-1
Interpolation

Calculating Colorvalues 9-2
L BReadFormat 7-4
LBWriteFormat 7-4
Loading registersin unit order 8-4
localbuffer 17
Loca buffer

Bypass 84
Logical Op 43
Logical Op and Software Writemask Example 46
Logical Operations 44
L ogicalOpMode 44
MaxHitRegion 6-1, 6-3, 6-6
M axRegion 6-2, 6-3, 6-6
Memory Configuration 7-2
Merge-copy Span Operations 22
MinHitRegion 6-1, 6-3, 6-6
MinRegion 6-2, 6-3, 6-6
Miscellaneous Generic Graphics Tips 8-5
origin

window 7-6
Origin

Setting 7-6
PCI burst transfers under Programmed I/0 8-3
PCI bus 7-2
PCI Disconnect Under Programmed 1/O 8-3
Performance Tips 81
picking 6-2
Picking Example 6-6
PickResult 6-1, 6-2, 6-6

GLINT R5 Reference Guide Volume |

PixelSize 7-3
primitive 17
pseudocode 9-1
Rapid clear of the localbuffer & framebuffer 8-4
Register Updates

Avoiding Unnecessary 8-4
ResetPickResult 6-2, 6-6
RGBA Fogging Equation 11
scissor test 6-2, 6-3
Screen Clipping Region 7-3
Screen Width 7-3
Software Writemask Example 47
Software Writemasks 47
Standard Framebuffer Read Operation 21
StartXDom 9-2
Statistic Operations 6-2
StatisticM ode 6-2, 6-5, 6-6
stencil buffer 17
stipple 17
Sync 6-3, 6-6, 7-5
Sync Interrupt Example 6-6
Synchronization 6-3
System Initialization 7-2
texture 17
texture mapping 17
UseConstantFBWriteData 14
Video Timing 7-3
Window Address

Setting 7-6
window control 17
Window Initialization 7-5
Write Masks 47
writemask 18
Writemasks 7-6
XOR Example 46

9-2 Proprietary and Confidential 3Dlabs

